

A329087


Decimal expansion of Sum_{k>=1} 1/(k^25), negated.


13



6, 6, 6, 8, 3, 2, 5, 9, 5, 6, 6, 2, 7, 4, 4, 8, 5, 2, 9, 8, 2, 9, 6, 3, 3, 3, 9, 7, 6, 6, 9, 6, 8, 1, 5, 7, 5, 4, 3, 4, 3, 2, 5, 6, 6, 2, 3, 8, 0, 3, 9, 6, 4, 0, 4, 0, 5, 8, 3, 3, 4, 5, 8, 2, 7, 1, 4, 8, 6, 8, 3, 3, 7, 2, 8, 9, 9, 0, 6, 0, 3, 4, 3, 6, 8, 6, 0, 4, 9, 2, 1
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

In general, for complex numbers z, if we define F(z) = Sum_{k>=0} 1/(k^2+z), f(z) = Sum_{k>=1} 1/(k^2+z), then we have:
F(z) = (1 + sqrt(z)*Pi*coth(sqrt(z)*Pi))/(2z), z != 0, 1, 4, 9, 16, ...;
f(z) = (1 + sqrt(z)*Pi*coth(sqrt(z)*Pi))/(2z), z != 0, 1, 4, 9, 16, ...; Pi^2/6, z = 0. Note that f(z) is continuous at z = 0.
This sequence gives f(5) (negated).
This and A329080 are essentially the same, but both sequences are added because some people may search for this, and some people may search for A329080.


LINKS

Table of n, a(n) for n=0..90.


FORMULA

Sum_{k>=1} 1/(k^25) = (1 + (sqrt(5)*Pi)*coth(sqrt(5)*Pi))/(10) = (1 + (sqrt(5)*Pi)*cot(sqrt(5)*Pi))/(10).


EXAMPLE

Sum_{k>=1} 1/(k^25) = 0.66683259566274485298...


PROG

(PARI) default(realprecision, 100); my(f(x) = (1 + (sqrt(x)*Pi)/tanh(sqrt(x)*Pi))/(2*x)); f(5)


CROSSREFS

Cf. A329080 (F(5)), A329081 (F(3)), A329082 (F(2)), A113319 (F(1)), A329083 (F(2)), A329084 (F(3)), A329085 (F(4)), A329086 (F(5)).
Cf. this sequence (f(5)), A329088 (f(3)), A329089 (f(2)), A013661 (f(0)), A259171 (f(1)), A329090 (f(2)), A329091 (f(3)), A329092 (f(4)), A329093 (f(5)).
Sequence in context: A098537 A276861 A131703 * A135357 A322346 A322345
Adjacent sequences: A329084 A329085 A329086 * A329088 A329089 A329090


KEYWORD

nonn,cons


AUTHOR

Jianing Song, Nov 04 2019


STATUS

approved



