

A329027


The least missing digit in the primorial base expansion of n. Only significant digits are considered, as the leading zeros are ignored.


4



0, 2, 0, 1, 0, 2, 2, 2, 0, 3, 0, 1, 3, 3, 0, 1, 0, 1, 2, 2, 0, 1, 0, 1, 2, 2, 0, 1, 0, 2, 2, 2, 2, 3, 3, 2, 2, 2, 0, 3, 0, 3, 3, 3, 0, 3, 0, 2, 2, 2, 0, 4, 0, 2, 2, 2, 0, 3, 0, 1, 3, 3, 3, 1, 3, 3, 3, 3, 0, 3, 0, 1, 3, 3, 0, 1, 0, 1, 4, 4, 0, 1, 0, 1, 3, 3, 0, 1, 0, 1, 2, 2, 2, 1, 4, 2, 2, 2, 0, 4, 0, 1, 4, 4, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

For n = 0 the value is ambiguous, thus the sequence starts from n=1.


LINKS

Antti Karttunen, Table of n, a(n) for n = 1..32768
Index entries for sequences related to primorial base


EXAMPLE

19 in primorial base (A049345) is written as "301". The least missing digit is 2, thus a(19) = 2.


PROG

(PARI) A329027(n) = { my(m=Map(), p=2); while(n, mapput(m, (n%p), 1); n = n\p; p = nextprime(1+p)); for(k=0, oo, if(!mapisdefined(m, k), return(k))); };


CROSSREFS

Cf. A049345, A329028.
Cf. A328574 (after its initial term, gives the positions of zeros in this sequence), A328840 (after its initial term, gives the positions of ones in this sequence).
Sequence in context: A029397 A129447 A125079 * A235987 A104597 A182936
Adjacent sequences: A329024 A329025 A329026 * A329028 A329029 A329030


KEYWORD

nonn,base


AUTHOR

Antti Karttunen, Nov 03 2019


STATUS

approved



