%I #5 Dec 27 2019 16:35:42
%S 1,1,7,13,11,133,463,1261,4039,2321,35839,105469,320503,953317,575267,
%T 8596237,25854247,77431669,232557151,139429433,2092490071,6275373061,
%U 18830313487,56482551853,6778577311,508359743893,1525146340543,4575304803901,13726182847159
%N a(n) = p(0,n), where p(x,n) is the strong divisibility sequence of polynomials based on sqrt(3/2) as in A328644.
%C a(n) is a strong divisibility sequence; i.e., gcd(a(h),a(k)) = a(gcd(h,k)).
%e See Example in A328644.
%t c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@Variables /@ #1 &)[List @@ poly], 0], poly];
%t r = Sqrt[3/2]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]];
%t Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]]; (* A328644 *)
%t Table[f[x, n] /. x -> 0, {n, 1, 30}] (* A329017 *)
%t Table[f[x, n] /. x -> 1, {n, 1, 30}] (* A329018 *)
%t Table[f[x, n] /. x -> 2, {n, 1, 30}] (* A329019 *)
%t (* _Peter J. C. Moses_, Nov 01 2019 *)
%Y Cf. A328644, A329018, A329019.
%K nonn
%O 1,3
%A _Clark Kimberling_, Nov 23 2019