login
A329015
a(n) = p(1,n), where p(x,n) is the strong divisibility sequence of polynomials based on sqrt(6) as in A327323.
4
1, 17, 229, 2873, 35101, 424337, 729667, 61370153, 736832461, 8843942657, 106137077509, 1273693758233, 15284569239421, 26202293082311, 2200998722429749, 26412015186735113, 316944334828711981, 3803332780883996897, 45639997185305228389, 547679985297149068793
OFFSET
1,2
COMMENTS
a(n) is a strong divisibility sequence; i.e., gcd(a(h),a(k)) = a(gcd(h,k)).
EXAMPLE
See Example in A327323.
MATHEMATICA
c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@Variables /@ #1 &)[List @@ poly], 0], poly];
r = Sqrt[6]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]];
Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]]; (* A327323 *)
Table[f[x, n] /. x -> 0, {n, 1, 30}] (* A329014 *)
Table[f[x, n] /. x -> 1, {n, 1, 30}] (* A329015 *)
Table[f[x, n] /. x -> 2, {n, 1, 30}] (* A329016 *)
(* Peter J. C. Moses, Nov 01 2019 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Nov 23 2019
STATUS
approved