The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A328995 Dirichlet g.f. = Product_{primes p == 1 mod 3} (1+p^(-s))/(1-p^(-s)). 0
 1, 2, 2, 2, 0, 2, 2, 2, 2, 0, 2, 2, 2, 2, 0, 4, 2, 2, 2, 0, 0, 2, 4, 2, 0, 2, 2, 2, 2, 0, 2, 0, 2, 2, 0, 2, 4, 2, 2, 0, 2, 4, 0, 4, 0, 2, 2, 2, 0, 0, 4, 2, 2, 0, 0, 2, 2, 2, 2, 0, 2, 2, 2, 2, 0, 0, 2, 4, 2, 0, 2, 4, 2, 2, 0, 0, 2, 2, 4, 0, 4, 2, 0, 2, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 REFERENCES Baake, Michael, and Peter AB Pleasants. "Algebraic solution of the coincidence problem in two and three dimensions." Zeitschrift für Naturforschung A 50.8 (1995): 711-717. See p. 713. Baake, M. and P. A. B. Pleasants. "The coincidence problem for crystals and quasicrystals." Aperiodic, vol. 94, pp. 25-29. 1995. LINKS Baake, Michael, and Peter AB Pleasants, Algebraic solution of the coincidence problem in two and three dimensions, Zeitschrift für Naturforschung A 50.8 (1995): 711-717. [Annotated scan of page 713 only]. PROG (PARI) t1=direuler(p=2, 2400, (1+(p%3<2)*X)) t2=direuler(p=2, 2400, 1/(1-(p%3<2)*X)) t3=dirmul(t1, t2) t4=vector(200, n, t3[6*n+1]) \\ (and then prepend 1) CROSSREFS Cf. A031358. Sequence in context: A335185 A319243 A307521 * A036476 A104994 A118664 Adjacent sequences:  A328992 A328993 A328994 * A328996 A328997 A328998 KEYWORD nonn AUTHOR N. J. A. Sloane, Nov 14 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 27 09:08 EDT 2020. Contains 338035 sequences. (Running on oeis4.)