The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A328990 a(n) = (3*b(n)+b(n-1)+1)/2, where b = A005409. 1
 2, 7, 19, 48, 118, 287, 695, 1680, 4058, 9799, 23659, 57120, 137902, 332927, 803759, 1940448, 4684658, 11309767, 27304195, 65918160, 159140518, 384199199, 927538919, 2239277040, 5406093002, 13051463047, 31509019099, 76069501248, 183648021598, 443365544447 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Colin Barker, Table of n, a(n) for n = 1..1000 Bill Allombert, Nicolas Brisebarre, and Alain Lasjaunias, On a two-valued sequence and related continued fractions in power series fields, arXiv:1607.07235 [math.NT], 2016-2017; The Ramanujan Journal 45.3 (2018): 859-871. See Theorem 3. Index entries for linear recurrences with constant coefficients, signature (3,-1,-1). FORMULA From Colin Barker, Nov 10 2019: (Start) G.f.: x*(2 + x) / ((1 - x)*(1 - 2*x - x^2)). a(n) = 3*a(n-1) - a(n-2) - a(n-3) for n>3. a(n) = (-6 + (3-2*sqrt(2))*(1-sqrt(2))^n + (1+sqrt(2))^n*(3+2*sqrt(2))) / 4. (End) E.g.f.: (1/2)*exp(x)*(-3 + 3*cosh(sqrt(2)*x) + 2*sqrt(2)*sinh(sqrt(2)*x)). - Stefano Spezia, Nov 11 2019 2*a(n) = A001333(n+2)-3. - R. J. Mathar, Jun 17 2020 MATHEMATICA LinearRecurrence[{3, -1, -1}, {2, 7, 19}, 40] (* or *) CoefficientList[Series[(2-x-3x^2-x^3)/(1-x-x^2)/(1-3*x+x^2+x^3), {x, 0, 33}], x] (* Vincenzo Librandi, Nov 11 2019 *) PROG (PARI) Vec(x*(2 + x) / ((1 - x)*(1 - 2*x - x^2)) + O(x^40)) \\ Colin Barker, Nov 10 2019 (MAGMA) I:=[2, 7, 19]; [n le 3 select I[n] else 3*Self(n-1)-Self(n-2)-Self(n-3): n in [1..40]] // Vincenzo Librandi, Nov 11 2019 CROSSREFS Cf. A005409. Sequence in context: A006589 A238914 A227946 * A099484 A018030 A051354 Adjacent sequences:  A328987 A328988 A328989 * A328991 A328992 A328993 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Nov 09 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 30 05:03 EDT 2020. Contains 337435 sequences. (Running on oeis4.)