OFFSET
1,2
COMMENTS
If x and y are members of the sequence and 10^k > y, then 10^k*x+y is a member.
The number of terms of up to k digits is A263366(k-1).
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..10000
Mathematics StackExchange, Divisibility by 7 of a number consisting of 0 and 1s
EXAMPLE
a(3)=10010 is in the sequence because it is divisible by 7 and each of its decimal digits is 0 or 1.
MAPLE
bintodec:= proc(n) local L, i; L:= convert(n, base, 2); add(10^(i-1)*L[i], i=1..nops(L)) end proc:
select(t -> t mod 7 = 0, map(bintodec, [$0..1000]));
PROG
(Magma) a:=[]; f:=func<n|Seqint(Intseq(Seqint(Intseq(n), 10), 2))>; for k in [0..220] do if f(k) mod 7 eq 0 then Append(~a, f(k)); end if; end for; a; // Marius A. Burtea, Nov 01 2019
(Python)
A328947_list = [n for n in (int(bin(m)[2:]) for m in range(10**4)) if not n % 7] # Chai Wah Wu, Nov 01 2019
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Robert Israel, Oct 31 2019
STATUS
approved