login
A328947
Numbers formed from decimal digits 0 and/or 1 which are divisible by 7.
1
0, 1001, 10010, 10101, 11011, 100100, 101010, 101101, 110110, 111111, 1000111, 1001000, 1010100, 1011010, 1011101, 1100001, 1101100, 1110011, 1111110, 10000011, 10001110, 10010000, 10011001, 10100111, 10101000, 10110100, 10111010, 10111101, 11000010, 11000101, 11001011, 11010111, 11011000
OFFSET
1,2
COMMENTS
If x and y are members of the sequence and 10^k > y, then 10^k*x+y is a member.
The number of terms of up to k digits is A263366(k-1).
EXAMPLE
a(3)=10010 is in the sequence because it is divisible by 7 and each of its decimal digits is 0 or 1.
MAPLE
bintodec:= proc(n) local L, i; L:= convert(n, base, 2); add(10^(i-1)*L[i], i=1..nops(L)) end proc:
select(t -> t mod 7 = 0, map(bintodec, [$0..1000]));
PROG
(Magma) a:=[]; f:=func<n|Seqint(Intseq(Seqint(Intseq(n), 10), 2))>; for k in [0..220] do if f(k) mod 7 eq 0 then Append(~a, f(k)); end if; end for; a; // Marius A. Burtea, Nov 01 2019
(Python)
A328947_list = [n for n in (int(bin(m)[2:]) for m in range(10**4)) if not n % 7] # Chai Wah Wu, Nov 01 2019
CROSSREFS
Intersection of A007088 and A008589.
Cf. A263366.
Sequence in context: A100709 A372419 A130600 * A114387 A357774 A204965
KEYWORD
nonn,base
AUTHOR
Robert Israel, Oct 31 2019
STATUS
approved