login
A328906
Decimal expansion of the solution x = 0.4895363211996... to 1 + 2^x = 6^x.
3
4, 8, 9, 5, 3, 6, 3, 2, 1, 1, 9, 9, 6, 4, 9, 4, 8, 8, 6, 8, 9, 8, 7, 5, 3, 1, 6, 8, 2, 2, 6, 5, 0, 1, 8, 9, 4, 0, 3, 5, 8, 6, 5, 1, 5, 7, 7, 1, 9, 1, 2, 1, 2, 7, 8, 4, 6, 4, 3, 6, 6, 7, 8, 6, 1, 9, 2, 5, 5, 6, 2, 8, 2, 5, 5, 8, 6, 6, 8, 4, 4, 8, 2, 3, 5, 0, 9, 7, 2, 4, 0, 4, 3, 3, 9, 0, 0, 5, 0
OFFSET
0,1
EXAMPLE
0.489536321199649488689875316822650189403586515771912127846436678619255628...
MATHEMATICA
RealDigits[x /. FindRoot[1 + 2^x == 6^x, {x, 1}, WorkingPrecision -> 120]][[1]] (* Amiram Eldar, Jun 28 2023 *)
PROG
(PARI) print(c=solve(x=0, 1, 1+2^x-6^x)); digits(c\.1^default(realprecision))[^-1] \\ [^-1] to discard possibly incorrect last digit. Use e.g. \p999 to get more digits. - M. F. Hasler, Oct 31 2019
CROSSREFS
Cf. A329336 (continued fraction).
Cf. A242208 (1 + 2^x = 4^x), A328900 (2^x + 3^x = 4^x), A328904 (1 + 3^x = 5^x), A328905 (1 + 2^x = 5^x), A328907 (1 + 3^x = 6^x).
Sequence in context: A201522 A368040 A117181 * A194623 A373642 A366022
KEYWORD
nonn,cons
AUTHOR
M. F. Hasler, Nov 11 2019
STATUS
approved