login
A328904
Decimal expansion of x = 0.7271601514124259243... solution to 1 + 3^x = 5^x.
6
7, 2, 7, 1, 6, 0, 1, 5, 1, 4, 1, 2, 4, 2, 5, 9, 2, 4, 3, 0, 4, 4, 7, 0, 8, 4, 4, 0, 0, 9, 5, 2, 1, 7, 6, 9, 3, 5, 4, 5, 8, 9, 0, 4, 5, 5, 6, 4, 5, 8, 3, 3, 0, 4, 1, 4, 2, 5, 7, 7, 7, 6, 4, 1, 7, 5, 2, 9, 0, 8, 6, 8, 4, 3, 2, 3, 0, 5, 7, 7, 3, 3, 5, 5, 0
OFFSET
0,1
EXAMPLE
0.7271601514124259243044708440095217693545890455645833041425777641752908684323...
MATHEMATICA
RealDigits[x /. FindRoot[1 + 3^x == 5^x, {x, 1}, WorkingPrecision -> 120]][[1]] (* Amiram Eldar, Jun 28 2023 *)
PROG
(PARI) print(c=solve(x=0, 1, 1+3^x-5^x)); digits(c\.1^default(realprecision))[^-1] \\ [^-1] to discard possibly incorrect last digit. Use e.g. \p999 to get more digits. - M. F. Hasler, Oct 31 2019
CROSSREFS
Cf. A329334 (continued fraction).
Cf. A242208 (1 + 2^x = 4^x), A328900 (2^x + 3^x = 4^x), A328905 (1 + 2^x = 5^x).
Sequence in context: A195404 A225146 A021583 * A352301 A177437 A242021
KEYWORD
nonn,cons
AUTHOR
M. F. Hasler, Oct 31 2019
STATUS
approved