%I #5 Nov 12 2019 19:23:14
%S 1,2,3,4,5,6,7,8,9,10,12,13,14,15,16,17,18,20,21,24,25,26,27,28,29,30,
%T 31,32,33,34,36,37,40,41,42,48,49,50,51,52,53,54,56,57,58,59,60,61,62,
%U 63,64,65,66,68,69,72,73,74,80,81,82,84,85,96,97,98,99
%N Numbers whose lengths of runs of 1's in their reversed binary expansion are weakly increasing.
%e The sequence of terms together with their reversed binary expansions begins:
%e 1: (1)
%e 2: (01)
%e 3: (11)
%e 4: (001)
%e 5: (101)
%e 6: (011)
%e 7: (111)
%e 8: (0001)
%e 9: (1001)
%e 10: (0101)
%e 12: (0011)
%e 13: (1011)
%e 14: (0111)
%e 15: (1111)
%e 16: (00001)
%e 17: (10001)
%e 18: (01001)
%e 20: (00101)
%e 21: (10101)
%e 24: (00011)
%t Select[Range[100],LessEqual@@Length/@Split[Join@@Position[Reverse[IntegerDigits[#,2]],1],#2==#1+1&]&]
%Y Complement of A328870.
%Y The version for prime indices is A304678.
%Y The binary expansion of n has A069010(n) runs of 1's.
%Y Cf. A000120, A003714, A014081, A112769, A164707, A245563, A328592.
%K nonn
%O 1,2
%A _Gus Wiseman_, Nov 12 2019