login
A328850
Squares in whose primorial base expansion only even digits appear.
3
0, 4, 16, 64, 144, 196, 484, 900, 1024, 1444, 1764, 2116, 2304, 4624, 5184, 5476, 6084, 6724, 13924, 14400, 14884, 18496, 19044, 20164, 23104, 23716, 24964, 28224, 29584, 61504, 65536, 66564, 70756, 73984, 79524, 80656, 85264, 88804, 90000, 121104, 131044, 135424, 139876, 186624, 195364, 204304, 209764, 242064, 260100, 264196
OFFSET
1,2
COMMENTS
Squares in A328849, squares such that also the prime factor form (A276086) of their primorial base expansion is a square,
FORMULA
a(n) = A000290(A328838(n)).
EXAMPLE
12^2 = 144 is written as "4400" in primorial base (A049345), as 4*A002110(3) + 4*A002110(2) + 0*A002110(1) + 0*A002110(0) = 4*30 + 4*6 = 144, thus its prime code encoding, A276086(144) = prime(4)^4 * prime(3)^4 = 7^4 * 5^4 = 1500625 is also a square, and 144 is included in this sequence.
MATHEMATICA
q[n_] := Module[{k = n, p = 2, s = {}, r}, While[{k, r} = QuotientRemainder[k, p]; k != 0 || r != 0, AppendTo[s, r]; p = NextPrime[p]]; AllTrue[s, EvenQ]]; Select[Range[0, 520]^2, q] (* Amiram Eldar, Mar 06 2024 *)
PROG
(PARI)
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
isA328850(n) = (issquare(n) && issquare(A276086(n)));
CROSSREFS
Cf. A328838 (gives the square roots).
Intersection of A000290 and A328849.
Sequence in context: A275217 A158988 A337968 * A330687 A027676 A249567
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Oct 30 2019
STATUS
approved