%I #7 Nov 01 2019 18:39:25
%S 0,1,2,3,30,4,9,6469693230,212,200560490130,510511,2312,39,
%T 7799922041683461553249199106329813876687996789903550945093032474868511536164700810,
%U 7858321551080267055879092,6469693260,2566376117594999414479597815340071648394471,557940830126698960967415392,1062411448280052319722448549835623701226301211611796930357321893850294264731624591303255041960530,421,7420738134813,512820,3217644767340672907899084554132,249
%N A276085 applied to the intersection of A048103 (p^p-free numbers) and A276156 (sums of distinct primorials).
%H Antti Karttunen, <a href="/A328833/b328833.txt">Table of n, a(n) for n = 1..34</a>
%H <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a>
%F a(n) = A276085(A328832(n)).
%o (PARI)
%o A129251(n) = { my(f = factor(n)); sum(k=1, #f~, (f[k, 2]>=f[k, 1])); };
%o A328828(n) = { my(i=1, p=2); while(n, if((n%p)>1, return(i)); i++; n = n\p; p = nextprime(1+p)); (0); };
%o isA328832(n) = ((0==A129251(n)) && (0==A328828(n)));
%o A002110(n) = prod(i=1,n,prime(i));
%o A276085(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*A002110(primepi(f[k, 1])-1)); };
%o for(n=1,32768,if(isA328832(n),print1(A276085(n),", ")));
%Y Cf. A002110, A129251, A048103, A276085, A276156, A328828, A328832.
%Y Cf. A328836 (same terms, sorted into ascending order).
%Y Cf. A328313 (a subsequence).
%K nonn
%O 1,3
%A _Antti Karttunen_, Oct 30 2019