login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A328812 Constant term in the expansion of (Product_{k=1..n} (1 + x_k) + Product_{k=1..n} (1 + 1/x_k))^n. 5
1, 2, 10, 164, 9826, 2031252, 1622278624, 4579408029576, 51207103076632066, 2052124795850957537060, 330463219813679264204224300, 192454957455454582636391397662856, 454577215426865313388106323928590128736, 3907905904547764847197154889183844343802986600 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..58

FORMULA

a(n) = A309010(n,n+1) = Sum_{k=0..n} binomial(n,k)^(n+1).

a(n) ~ c * exp(-1/4) * 2^((2*n+1)*(n+1)/2) / (Pi*n)^((n+1)/2), where c = A218792 = Sum_{k = -infinity..infinity} exp(-2*k^2) = 1.271341522189... and c = Sum_{k = -infinity..infinity} exp(-2*(k+1/2)^2) = 1.23528676585389... if n is odd. - Vaclav Kotesovec, May 06 2021

MATHEMATICA

a[n_] := Sum[Binomial[n, k]^(n + 1), {k, 0, n}]; Array[a, 14, 0] (* Amiram Eldar, May 06 2021 *)

PROG

(PARI) {a(n) = sum(k=0, n, binomial(n, k)^(n+1))}

CROSSREFS

Cf. A167010, A309010, A328813, A328814.

Sequence in context: A294352 A007131 A126449 * A126451 A260122 A132341

Adjacent sequences:  A328809 A328810 A328811 * A328813 A328814 A328815

KEYWORD

nonn

AUTHOR

Seiichi Manyama, Oct 28 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 18:19 EST 2021. Contains 349467 sequences. (Running on oeis4.)