login
A328764
Lexicographically earliest infinite sequence such that a(i) = a(j) => A328763(i) = A328763(j) for all i, j.
3
1, 2, 3, 4, 5, 6, 3, 7, 5, 8, 9, 10, 11, 12, 9, 13, 14, 15, 16, 17, 18, 19, 18, 20, 21, 17, 18, 22, 23, 24, 11, 7, 5, 25, 16, 26, 16, 12, 9, 27, 18, 28, 29, 17, 18, 30, 18, 31, 32, 17, 23, 33, 23, 34, 35, 36, 23, 37, 38, 39, 29, 12, 9, 40, 14, 41, 32, 17, 18, 42, 18, 43, 44, 45, 23, 46, 23, 47, 48, 36, 23, 49, 50, 51, 52, 53, 54, 55, 50, 56, 44, 17, 18, 40, 23
OFFSET
0,2
COMMENTS
Restricted growth sequence transform of A328763.
For all i, j:
a(i) = a(j) => A328765(i) = A328765(j) => A328578(i) = A328578(j),
a(i) = a(j) => A328766(i) = A328766(j).
PROG
(PARI)
up_to = 32768;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
A328613(n) = { my(m=1, p=2); while(n, m *= p^valuation(n, p); n = n\p; p = nextprime(1+p)); (m*p); };
v328764 = rgs_transform(vector(1+up_to, n, A328763(n-1)));
A328764(n) = v328764[1+n];
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 28 2019
STATUS
approved