login
A328728
a(n) = Sum_{k = 0..w and t_k > 0} (-1)^t_k * 2^k, where Sum_{k = 0..w} t_k * 3^k is the ternary representation of A328727(n).
3
0, -1, 1, -2, 2, -4, -5, -3, 4, 3, 5, -8, -9, -7, -10, -6, 8, 7, 9, 6, 10, -16, -17, -15, -18, -14, -20, -21, -19, -12, -13, -11, 16, 15, 17, 14, 18, 12, 11, 13, 20, 19, 21, -32, -33, -31, -34, -30, -36, -37, -35, -28, -29, -27, -40, -41, -39, -42, -38, -24
OFFSET
1,4
COMMENTS
Every integer appears once in the sequence.
LINKS
FORMULA
a(n) = A328749(A328727(n)).
Sum_{k = 1..n} a(k) = 0 iff n belongs to A001045.
PROG
(PARI) for (n=0, 297, t = Vecrev(digits(n, 3)); if (sum(k=1, #t-1, t[k]*t[k+1])==0, print1 (sum(k=1, #t, if (t[k], 2^k*(-1)^t[k], 0)/2) ", ")))
(Python)
from itertools import count, islice
from gmpy2 import digits
def A328728_gen(startvalue=0): # generator of terms >= startvalue
for n in count(max(startvalue, 0)):
s = digits(n, 3)
for i in range(len(s)-1):
if '0' not in s[i:i+2]:
break
else:
yield sum((-(1<<i) if int(j)&1 else 1<<i) for i, j in enumerate(s[::-1]) if j!='0')
A328728_list = list(islice(A328728_gen(), 20)) # Chai Wah Wu, Apr 12 2023
CROSSREFS
KEYWORD
sign,base
AUTHOR
Rémy Sigrist, Oct 26 2019
STATUS
approved