login
Decimal expansion of Sum_{k>=1} Kronecker(5,k)/k^3.
4

%I #47 Dec 17 2023 03:05:22

%S 8,5,4,8,2,4,7,6,6,6,4,8,5,4,3,0,1,0,2,3,5,6,9,0,0,8,3,5,3,8,1,3,7,6,

%T 9,7,1,3,8,3,9,6,4,6,4,9,3,7,0,0,5,2,8,2,7,3,0,7,0,2,4,9,9,3,8,1,1,2,

%U 3,8,3,3,4,1,2,6,8,9,4,2,8,1,2,8,4,2,0,9,5,6,7

%N Decimal expansion of Sum_{k>=1} Kronecker(5,k)/k^3.

%C Let Chi() be a primitive character modulo d, the so-called Dirichlet L-series L(s,Chi) is the analytic continuation (see the functional equations involving L(s,Chi) in the MathWorld link entitled Dirichlet L-Series) of the sum Sum_{k>=1} Chi(k)/k^s, Re(s)>0 (if d = 1, the sum converges requires Re(s)>1).

%C If s != 1, we can represent L(s,Chi) in terms of the Hurwitz zeta function by L(s,Chi) = (Sum_{k=1..d} Chi(k)*zeta(s,k/d))/d^s.

%C L(s,Chi) can also be represented in terms of the polylog function by L(s,Chi) = (Sum_{k=1..d} Chi'(k)*polylog(s,u^k))/(Sum_{k=1..d} Chi'(k)*u^k), where Chi' is the complex conjugate of Chi, u is any primitive d-th root of unity.

%C If m is a positive integer, we have L(m,Chi) = (Sum_{k=1..d} Chi(k)*polygamma(m-1,k/d))/((-d)^m*(m-1)!).

%C In this sequence we have Chi = A080891 and s = 3.

%H Steven R. Finch, <a href="https://doi.org/10.1017/9781316997741">Mathematical Constants II</a>, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 99.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DirichletL-Series.html">Dirichlet L-Series</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PolygammaFunction.html">Polygamma Function</a>.

%F Equals (zeta(3,1/5) - zeta(3,2/5) - zeta(3,3/5) + zeta(3,4/5))/25, where zeta(s,a) is the Hurwitz zeta function.

%F Equals (polylog(3,u) - polylog(3,u^2) - polylog(3,u^3) + polylog(3,u^4))/sqrt(5), where u = exp(2*Pi*i/5) is a 5th primitive root of unity, i = sqrt(-1).

%F Equals (polygamma(2,1/5) - polygamma(2,2/5) - polygamma(2,3/5) - polygamma(2,4/5))/(-250).

%F Equals 1/(Product_{p prime == 1 or 4 (mod 5)} (1 - 1/p^3) * Product_{p prime == 2 or 3 (mod 5)} (1 + 1/p^3)). - _Amiram Eldar_, Dec 17 2023

%e 1 - 1/2^3 - 1/3^3 + 1/4^3 + 1/6^3 - 1/7^3 - 1/8^3 + 1/9^3 + ... = 0.8548247666...

%t (PolyGamma[2, 1/5] - PolyGamma[2, 2/5] - PolyGamma[2, 3/5] + PolyGamma[2, 4/5])/(-250) // RealDigits[#, 10, 102] & // First

%Y Cf. A080891.

%Y Decimal expansion of Sum_{k>=1} Kronecker(d,k)/k^3, where d is a fundamental discriminant: A251809 (d=-8), A327135 (d=-7), A153071 (d=-4), A129404 (d=-3), A002117 (d=1), this sequence (d=5), A329715 (d=8), A329716 (d=12).

%Y Decimal expansion of Sum_{k>=1} Kronecker(5,k)/k^s: A086466 (s=1), A328717 (s=2), this sequence (s=3).

%K nonn,cons

%O 0,1

%A _Jianing Song_, Nov 19 2019