OFFSET
0,3
COMMENTS
a(n) is the number of n-step closed walks (from origin to origin) in n-dimensional lattice where each step changes at most one component by -1 or by +1. - Alois P. Heinz, Oct 26 2019
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..398 (terms 0..199 from Alois P. Heinz)
FORMULA
a(n) = n! * [x^n] exp(x) * BesselI(0,2*x)^n. - Ilya Gutkovskiy, Oct 26 2019
a(n) ~ c * d^n * n^n, where d = 0.8047104059195202206625458331930618795... and c = 2.12946224998808159475495497... if n is even and c = 1.4189559976544232606562785... if n is odd. - Vaclav Kotesovec, Oct 27 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 26 2019
EXTENSIONS
a(7)-a(19) from Alois P. Heinz, Oct 26 2019
STATUS
approved