login
A328700
Numbers k dividing nonzero terms in A003095.
2
1, 2, 5, 10, 13, 26, 41, 65, 82, 130, 137, 149, 205, 229, 274, 293, 298, 397, 410, 458, 509, 533, 586, 661, 677, 685, 709, 745, 761, 794, 809, 877, 881, 1018, 1066, 1145, 1217, 1249, 1277, 1322, 1354, 1370, 1418, 1465, 1490, 1522, 1601, 1618, 1754, 1762, 1781, 1937, 1985, 2053, 2290
OFFSET
1,2
COMMENTS
k is a term if and only if A328699(k) = 0, in which case all the indices m such that k divides A003095(m) are m = t*A248218(k), t = 0, 1, 2, 3, ...
LINKS
EXAMPLE
41 divides A003095(7) = 210066388901, so 41 is in this sequence. In addition, 41 divides A003095(m) if and only if 7 divides m.
29 is not a term: {A003095(n) mod 29} = {0, 1, 2, 5, 26, 10, 14, 23, 8, 7, 21, 7, 21, 7, 21, ...}, so 29 does not divides A003095(m) for any m > 0.
PROG
(PARI) v(n) = my(v=[0], k, flag=1); for(i=2, n+1, k=(v[#v]^2+1)%n; v=concat(v, k); for(j=1, i-1, if(v[j]==k, flag=0)); if(flag==0, break())); v;
is(n) = !(v(n)[#v(n)]);
CROSSREFS
The primes in this sequence are given by A247981.
Sequence in context: A281229 A185647 A064392 * A018296 A033316 A099194
KEYWORD
nonn
AUTHOR
Jianing Song, Oct 26 2019
STATUS
approved