login
A328617
Multiplicative with a(p^e) = p^e, if e = 0 mod p, otherwise a(p^e) = p^((p*floor(e/p)) + A124223(A000720(p),e mod p)).
4
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 125, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 2401, 250, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 375, 76, 77, 78, 79, 80, 81
OFFSET
1,2
FORMULA
For all n >= 0, A276085(a(A276086(n))) = A289234(n).
PROG
(PARI) A328617(n) = { my(f = factor(n), m, q); for(k=1, #f~, q = (f[k, 2]\f[k, 1]); m = (f[k, 2]%f[k, 1]); if(m, f[k, 2] = q*f[k, 1] + lift(1/Mod(m, f[k, 1])))); factorback(f); };
CROSSREFS
Cf. also A328618, A328619.
Sequence in context: A135381 A135382 A351831 * A230308 A357875 A064598
KEYWORD
nonn,mult
AUTHOR
Antti Karttunen, Oct 23 2019
STATUS
approved