login
A328615
Number of digits larger than 1 in primorial base expansion of n.
5
0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 3, 3, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2
OFFSET
0,17
FORMULA
a(n) = A267263(n) - A328614(n).
a(n) = A001221(A328572(n)).
EXAMPLE
In primorial base (A049345), 87 is written as "2411" because 87 = 2*A002110(3) + 4*A002110(2) + 1*A002110(1) + 1*A002110(0) = 2*30 + 4*6 + 1*2 + 1*1. Only the digits 2 and 4 of these are larger than one, thus a(87) = 2.
MATHEMATICA
a[n_] := Module[{k = n, p = 2, s = 0, r}, While[{k, r} = QuotientRemainder[k, p]; k != 0 || r != 0, If[r > 1, s++]; p = NextPrime[p]]; s]; Array[a, 100, 0] (* Amiram Eldar, Mar 13 2024 *)
PROG
(PARI) A328615(n) = { my(s=0, p=2); while(n, s += (1<(n%p)); n = n\p; p = nextprime(1+p)); (s); };
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Oct 22 2019
STATUS
approved