OFFSET
1,2
COMMENTS
First differs from A091065 in lacking 50.
A Lyndon word is a finite sequence that is lexicographically strictly less than all of its cyclic rotations.
EXAMPLE
The sequence of terms together with their binary expansions and binary indices begins:
1: 1 ~ {1}
2: 10 ~ {2}
4: 100 ~ {3}
6: 110 ~ {2,3}
8: 1000 ~ {4}
12: 1100 ~ {3,4}
14: 1110 ~ {2,3,4}
16: 10000 ~ {5}
20: 10100 ~ {3,5}
24: 11000 ~ {4,5}
26: 11010 ~ {2,4,5}
28: 11100 ~ {3,4,5}
30: 11110 ~ {2,3,4,5}
32: 100000 ~ {6}
40: 101000 ~ {4,6}
44: 101100 ~ {3,4,6}
48: 110000 ~ {5,6}
52: 110100 ~ {3,5,6}
56: 111000 ~ {4,5,6}
58: 111010 ~ {2,4,5,6}
MATHEMATICA
aperQ[q_]:=Array[RotateRight[q, #]&, Length[q], 1, UnsameQ];
neckQ[q_]:=Array[OrderedQ[{q, RotateRight[q, #]}]&, Length[q]-1, 1, And];
Select[Range[100], aperQ[Reverse[IntegerDigits[#, 2]]]&&neckQ[Reverse[IntegerDigits[#, 2]]]&]
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Gus Wiseman, Oct 22 2019
STATUS
approved