%I #22 Mar 12 2021 23:49:23
%S 1,1,1,1,3,3,1,1,1,1,3,3,5,5,5,5,15,15,25,25,25,25,75,75,125,125,125,
%T 125,375,375,1,1,1,1,3,3,1,1,1,1,3,3,5,5,5,5,15,15,25,25,25,25,75,75,
%U 125,125,125,125,375,375,7,7,7,7,21,21,7,7,7,7,21,21,35,35,35,35,105,105,175,175,175,175,525,525,875,875,875,875
%N Primorial base expansion of n converted into its prime product form, but with 1 subtracted from all nonzero digits: a(n) = A003557(A276086(n)).
%H Antti Karttunen, <a href="/A328572/b328572.txt">Table of n, a(n) for n = 0..2310</a>
%H Antti Karttunen, <a href="/A328572/a328572.txt">Data supplement: n, a(n) computed for n = 0..32768</a>
%H <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a>
%F a(n) = A003557(A276086(n)).
%F a(n) = A276086(n) / A328571(n).
%F a(n) = A328475(n) / A328573(n).
%F For all n >= 1, 1+A051903(a(n)) = A328114(n).
%F a(n) = A085731(A276086(n)) = gcd(A276086(n), A327860(n)). - _Antti Karttunen_, Feb 28 2021
%t Block[{b = MixedRadix[Reverse@ Prime@ Range@ 12]}, Array[#1/(Times @@ #2[[All, 1]]) & @@ {#1, FactorInteger[#]} &[Times @@ Power @@@ #] &@ Transpose@ {Prime@ Range@ Length@ #, Reverse@ #} &@ IntegerDigits[#, b] &, 87, 0]] (* _Michael De Vlieger_, Mar 12 2021 *)
%o (PARI) A328572(n) = { my(m=1, p=2); while(n, if(n%p, m *= p^((n%p)-1)); n = n\p; p = nextprime(1+p)); (m); };
%Y Cf. A003557, A051903, A085731, A276086, A327860, A328114, A328475, A328571, A328573, A328575, A328577.
%K nonn,look
%O 0,5
%A _Antti Karttunen_, Oct 20 2019