login
A328569
Exponent of least prime factor in A276086(A276086(n)), where A276086 converts the primorial base expansion of n into its prime product form.
4
1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 2, 1, 4, 1, 5, 1, 1, 1, 6, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 5, 1, 4, 1, 2, 1, 3, 1, 9, 1, 1, 1, 4, 1, 1, 1, 1, 1, 4, 1, 2, 1, 2, 1, 7, 1, 10, 1, 1, 1, 2, 1, 6, 1, 2, 1, 10, 1, 8, 1, 1, 1, 6, 1, 7, 1, 1, 1, 3, 1, 4, 1, 2, 1, 5, 1, 4, 1, 1, 1, 3
OFFSET
0,6
COMMENTS
Equally, the least significant nonzero digit in primorial base expansion of A276086(n).
FORMULA
a(n) = A276088(A276086(n)) = A067029(A276087(n)).
max(a(n),1+A051903(A328400(A003557(A276086(A328476(n)))))) = A328389(n). [A328400 is optional in the formula]
For all even n, a(n) < A328579(n).
PROG
(PARI)
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
A276088(n) = { my(e=0, p=2); while(n && !(e=(n%p)), n = n/p; p = nextprime(1+p)); (e); };
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 20 2019
STATUS
approved