%I #14 Jun 22 2021 09:52:36
%S 1,-1,-5,39,-345,2961,-24866,207759,-1737670,14584625,-122937305,
%T 1040906771,-8852158628,75598131215,-648168748072,5577807139921,
%U -48163964723088,417210529188188,-3624610235789053,31575290280786530,-275758194822813754
%N Coefficients in Göttsche's universal power series B_1(q) arising from enumeration of d-nodal curves in a linear system of dimension d on an algebraic surface.
%C The power series appears to be well defined, only the interpretation is conjectural.
%C Now proved by Tzeng. - _Andrey Zabolotskiy_, Jun 22 2021
%H Lothar Göttsche, <a href="https://doi.org/10.1007/s002200050434">A conjectural generating function for numbers of curves on surfaces</a>, Communications in mathematical physics 196.3 (1998): 523-533. Also arXiv:<a href="https://arxiv.org/abs/alg-geom/9711012">alg-geom/9711012</a>, Nov 1997.
%H Yu-jong Tzeng, <a href="https://www.proquest.com/openview/6b9b7ec298a4bad357d8a051842f69e3">A proof of the Göttsche-Yau-Zaslow formula</a>, Stanford University, 2010.
%F B_1(q) = 1 - q - 5*q^2 + 39*q^3 - 345*q^4 + 2961*q^5 - 24866*q^6 + 207759*q^7 - 1737670*q^8 + 14584625*q^9 - 122937305*q^10 + 1040906771*q^11 - 8852158628*q^12 + 75598131215*q^13 - 648168748072*q^14 + 5577807139921*q^15 - 48163964723088*q^16 + 417210529188188*q^17 - 3624610235789053*q^18 + 31575290280786530*q^19 - 275758194822813754*q^20 + ...
%Y Cf. A328555.
%K sign
%O 0,3
%A _N. J. A. Sloane_, Oct 29 2019
%E Missing a(1) = -1 inserted by _Andrey Zabolotskiy_, Jun 22 2021