login
a(n) is the Severi degree for curves of degree n and cogenus 4.
5

%I #25 Jan 19 2021 05:50:50

%S 0,0,0,666,36975,437517,2667375,11225145,37206936,104285790,257991042,

%T 579308220,1203756165,2347234131,4340067705,7670818467,13041558390,

%U 21436446060,34205577876,53166223470,80723690667,120014201385,175072295955,251025419421

%N a(n) is the Severi degree for curves of degree n and cogenus 4.

%C Setting n=4 gives a(4) = 666, and Vainsencher remarks that "... 666 = 126 + 540 [is] the number of 4-nodal quartics through 10 general points. Indeed, a plane quartic with 4 nodes splits as a union of 2 conics, 126 of which pass through 10 points, or of a singular cubic and a line through 10 points."

%C All terms are divisible by 3, all but every third by 9. - _M. F. Hasler_, Oct 30 2019

%H Colin Barker, <a href="/A328551/b328551.txt">Table of n, a(n) for n = 1..1000</a>

%H Florian Block, <a href="https://arxiv.org/abs/1006.0218">Computing node polynomials for plane curves</a>, arXiv:1006.0218 [math.AG], 2010-2011; Math. Res. Lett. 18, (2011), no. 4, 621-643.

%H Florian Block, Susan Jane Colley, and Gary Kennedy, <a href="https://arxiv.org/abs/1303.5308">Computing Severi degrees with long-edge graphs</a>, Bulletin of the Brazilian Mathematical Society, New Series 45.4 (2014): 625-647. Also arXiv:1303.5308 [math.AG], 2013.

%H Sergey Fomin and Grigory Mikhalkin, <a href="https://doi.org/10.4171/JEMS/238">Labeled floor diagrams for plane curves</a>, Journal of the European Mathematical Society 012.6 (2010): 1453-1496; arXiv:<a href="https://arxiv.org/abs/0906.3828">0906.3828</a> [math.AG], 2009-2010.

%H Israel Vainsencher, <a href="https://arxiv.org/abs/alg-geom/9312012">Enumeration of n-fold tangent hyperplanes to a surface</a>, arXiv:alg-geom/9312012, 1993-1994; J. Algebraic Geom., 4 (1995), 503-526. See Section 5.1.1.

%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (9,-36,84,-126,126,-84,36,-9,1).

%F a(n) = -8865 + (18057/4)*n + (37881/8)*n^2 - 2529*n^3 - 642*n^4 + (1809/4)*n^5 - 27*n^7 + (27/8)*n^8 for n > 2.

%F From _Colin Barker_, Oct 28 2019: (Start)

%F G.f.: 3*x^4*(222 + 10327*x + 42906*x^2 + 1626*x^3 - 17534*x^4 + 9879*x^5 - 2226*x^6 + 160*x^7) / (1 - x)^9.

%F a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>11.

%F (End)

%F a(2+3k) == 3 (mod 9), all other a(n) == 0 (mod 9). Periods mod 5, 7, 2 (of length 5, 7, 8): a(3..7 + 5k) == (0, 1, 0, 2, 0) (mod 5). a(3..9 + 7k) == (0, 1, 1, 3, 4, 1, 4) (mod 7). If 1 <= m <= 8, then a(m + 8k) is odd iff m > 4. - _M. F. Hasler_, Oct 30 2019

%o (PARI) concat([0, 0, 0], Vec(3*x^4*(222 + 10327*x + 42906*x^2 + 1626*x^3 - 17534*x^4 + 9879*x^5 - 2226*x^6 + 160*x^7) / (1 - x)^9 + O(x^30))) \\ _Colin Barker_, Oct 28 2019

%o (PARI) {A328551(n, c=[222, 11881, 109530, 378831, 632340, 555660, 249480, 45360], p=3)=sum(k=1,min(#c,n-=3), c[k]*p*=(n-k+1)/k)} \\ _M. F. Hasler_, Oct 30 2019

%Y Cf. A171108, A171113, A328552.

%K nonn,easy

%O 1,4

%A _N. J. A. Sloane_, Oct 27 2019

%E New name and a(1)=a(2)=0 from _Andrey Zabolotskiy_, Jan 19 2021