

A328512


Number of distinct connected components of the multiset of multisets with MMnumber n.


0



0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 1, 3, 1, 2, 1, 1, 1, 3, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,6


COMMENTS

For n > 1, the first appearance of n is 2 * A080696(n  1).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MMnumber n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MMnumber 78 is {{},{1},{1,2}}.


LINKS

Table of n, a(n) for n=1..87.


FORMULA

If n is even, a(n) = A305079(n)  A007814(n) + 1; otherwise, a(n) = A305079(n).


EXAMPLE

The multiset of multisets with MMnumber 1508 is {{},{},{1,2},{1,3}}, which has the 3 connected components {{}}, {{}}, and {{1,2},{1,3}}, two of which are distinct, so a(1508) = 2.
The multiset of multisets with MMnumber 12818 is {{},{1,2},{4},{1,3}}, which has the 3 connected components {{}}, {{1,2},{1,3}}, and {{4}}, so a(12818) = 3.


MATHEMATICA

primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[Less@@#, GCD@@s[[#]]]>1&]}, If[c=={}, s, zsm[Sort[Append[Delete[s, List/@c[[1]]], LCM@@s[[c[[1]]]]]]]]];
Table[Length[Union[zsm[primeMS[n]]]], {n, 100}]


CROSSREFS

Positions of 0's and 1's are A305078 together with all powers of 2.
Connected numbers are A305078.
Connected components are A305079.
Cf. A007814, A056239, A112798, A286518, A302242, A304714, A304716, A322389, A327076, A328513.
Sequence in context: A307610 A125029 A062893 * A302041 A302031 A237353
Adjacent sequences: A328509 A328510 A328511 * A328513 A328514 A328515


KEYWORD

nonn


AUTHOR

Gus Wiseman, Oct 20 2019


STATUS

approved



