Integer sequences from noncommuting multivariate polynomials

Noncommutative multivariate polynomials

We consider multivariate polynomials with non-commuting indeterminates, as in the freealg package. For example:

```
library("freealg")
p <- as.freealg("1+x+y")
p`2
## free algebra element algebraically equal to
## + 1 + 2*x + 1*xx + 1*xy + 2*y + 1*yx + 1*yy
```

See how terms xy and yx are retained: variables are not assumed to commute. We can follow Haiman (1993) and consider the expression

$$
E(p)=\left(x+y+x^{-1}+y^{-1}\right)^{p}, \quad p \geqslant 0
$$

On the understanding that the variables do not commute, Haiman asks what the constant term of $E(p)$ is. The package answers that easily (package idiom for x^{-1} is uppercase X):

```
f <- function(p){constant(as.freealg("x+y+X+Y")^p)}
sapply(0:9,f)
```

```
## [1] 1 1 0 0 < 4 0
```

```
## [1] 1 1 0 0 < 4 0
```

It's clear in hindsight that only even p will have nonzero constant:

```
sapply(2*(0:5),f)
```

\#\# [1] $\quad 1 \quad 4 \quad 28 \quad 232 \quad 209219864$

This is Sloane's sequence A035610, http://oeis.org/A035610. We can ask the same question but for different expressions.

```
g <- function(p,string){constant(as.freealg(string)^p)}
sapply(0:7,g,"1+x+y+X+Y")
## [1] 
```

This sequence is not recorded on OEIS. We might also wonder about other expressions:

```
sapply(0:7,g,"x+y+XY")
## [1] 1 0 0}0
```

this is only nonzero when $p=0 \bmod 3$, duh:

```
sapply(3*(0:4),g,"x+y+XY")
## [1] 1 1 3 llllll
```

again not in OEIS. Or even:

```
sapply(3*(0:4),g, "x+y+XY+YX")
## [1] 
```

another new sequence.

