login
Length of the longest run of divisors > 1 of n.
10

%I #9 Feb 23 2023 15:30:26

%S 0,1,1,1,1,2,1,1,1,1,1,3,1,1,1,1,1,2,1,2,1,1,1,3,1,1,1,1,1,2,1,1,1,1,

%T 1,3,1,1,1,2,1,2,1,1,1,1,1,3,1,1,1,1,1,2,1,2,1,1,1,5,1,1,1,1,1,2,1,1,

%U 1,1,1,3,1,1,1,1,1,2,1,2,1,1,1,3,1,1,1,1,1,2,1,1,1,1,1,3,1,1,1,2,1,2,1,1,1

%N Length of the longest run of divisors > 1 of n.

%H Antti Karttunen, <a href="/A328457/b328457.txt">Table of n, a(n) for n = 1..100000</a>

%t Table[If[n==1,0,Max@@Length/@Split[Rest[Divisors[n]],#2==#1+1&]],{n,100}]

%o (PARI) A328457(n) = { my(rl=0,pd=0,m=0); fordiv(n, d, if(d>1, if(d>(1+pd), m = max(m,rl); rl=0); pd=d; rl++)); max(m,rl); }; \\ _Antti Karttunen_, Feb 23 2023

%Y Records occur at A328448.

%Y Positions of 0's and 1's are A088725.

%Y The version that looks at all divisors (including 1) is A055874.

%Y The number of successive pairs of divisors > 1 of n is A088722(n).

%Y The Heinz number of the multiset of run-lengths of divisors of n is A328166(n).

%Y The longest run of nontrivial divisors of n is A328458(n).

%Y Cf. A000005, A027750, A129308, A181063, A199970, A328162, A328195, A328449, A360128.

%K nonn

%O 1,6

%A _Gus Wiseman_, Oct 16 2019

%E Data section extended up to a(105) by _Antti Karttunen_, Feb 23 2023