OFFSET
0,3
COMMENTS
A length n inversion sequence e_1e_2...e_n is a sequence of integers such that 0 <= e_i < i. The term a(n) counts the inversion sequences of length n with no entries e_i, e_{i+1}, e_{i+2} such that e_i >= e_{i+1} = e_{i+2}. This is the same as the set of inversion sequences of length n avoiding the consecutive patterns 000 and 100.
The term a(n) also counts the inversion sequences of length n with no entries e_i, e_{i+1}, e_{i+2} such that e_i = e_{i+1} >= e_{i+2}. This is the same as the set of inversion sequences of length n avoiding the consecutive patterns 000 and 110, see the Auli and Elizalde reference.
LINKS
Juan S. Auli and Sergi Elizalde, Consecutive patterns in inversion sequences II: avoiding patterns of relations, arXiv:1906.07365 [math.CO], 2019.
EXAMPLE
The a(4)=18 length 4 inversion sequences avoiding the consecutive patterns 000 and 100 are 0010, 0110, 0020, 0120, 0101, 0011, 0021, 0121, 0102, 0012, 0112, 0022, 0122, 0103, 0013, 0113, 0023, and 0123.
MAPLE
# after Alois P. Heinz in A328357
b := proc(n, x, t) option remember; `if`(n = 0, 1, add(
`if`(t and x <= i, 0, b(n - 1, i, i = x)), i = 0 .. n - 1))
end proc:
a := n -> b(n, -1, false):
seq(a(n), n = 0 .. 24);
MATHEMATICA
b[n_, x_, t_] := b[n, x, t] = If[n == 0, 1, Sum[If[t && x <= i, 0, b[n - 1, i, i == x]], {i, 0, n - 1}]];
a[n_] := b[n, -1, False];
CROSSREFS
KEYWORD
nonn
AUTHOR
Juan S. Auli, Oct 17 2019
STATUS
approved