login
Quasi-amicable pairs.
1

%I #32 Nov 18 2019 16:09:28

%S 48,75,140,195,1050,1925,1575,1648,2024,2295,5775,6128,8892,16587,

%T 9504,20735,62744,75495,186615,206504,196664,219975,199760,309135,

%U 266000,507759,312620,549219,526575,544784,573560,817479,587460,1057595,1000824,1902215,1081184,1331967,1139144,1159095,1140020,1763019

%N Quasi-amicable pairs.

%C Also called betrothed pairs, or quasiamicable pairs, or reduced amicable pairs.

%C A pair of numbers x and y is called quasi-amicable if sigma(x) = sigma(y) = x + y + 1, where sigma(n) is the sum of the divisors of n.

%C All known quasi-amicable pairs have opposite parity.

%C First differs from A005276 at a(6).

%C According to Hisanori Mishima (see link) there are 404 quasi-amicable pairs where the smaller part is less than 10^10. See A126160 for more values. - _Peter Luschny_, Nov 18 2019

%H R. K. Guy, Unsolved Problems in Number Theory, B5.

%H P. Hagis and G. Lord, <a href="https://doi.org/10.1090/S0025-5718-1977-0434939-3">Quasi-amicable numbers</a>, Math. Comp. 31 (1977), 608-611.

%H Hisanori Mishima, <a href="http://www.asahi-net.or.jp/~kc2h-msm/mathland/math09/math09t2.htm">Table of quasi-amicable pairs under 10^10</a>.

%H Paul Pollack, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Pollack/pollack3.html">Quasi-Amicable Numbers are Rare</a>, Journal of Integer Sequences, Vol. 14 (2011), Article 11.5.2.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/QuasiamicablePair.html">Quasiamicable Pair.</a>

%F a(2*n-1) = A003502(n); a(2*n) = A003503(n).

%e Initial quasi-amicable pairs:

%e 48, 75;

%e 140, 195;

%e 1050, 1925;

%e 1575, 1648;

%e 2024, 2295;

%e ...

%e The sum of the divisors of 48 is 1 + 2 + 3 + 4 + 6 + 8 + 12 + 16 + 24 + 48 = 124. On the other hand the sum of the divisors of 75 is 1 + 3 + 5 + 15 + 25 + 75 = 124. Note that 48 + 75 + 1 = sigma(48) = sigma(75) = 124. The smallest quasi-amicable pair is (48, 75), so a(1) = 48 and a(2) = 75.

%p with(numtheory): aList := proc(searchbound)

%p local r, n, m, L: L := []:

%p for m from 1 to searchbound do

%p n := sigma(m) - m - 1:

%p if n <= m then next fi;

%p r := sigma(n) - n - 1:

%p if r = m then L := [op(L), m, n] fi;

%p od; L end:

%p aList(10000); # _Peter Luschny_, Nov 18 2019

%Y A003502 and A003503 interleaved.

%Y Cf. A000203, A005276, A126160, A179612, A259180.

%K nonn

%O 1,1

%A _Omar E. Pol_, Oct 14 2019