The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A328365 Irregular triangle read by rows in which row n lists in reverse order the partitions of n into consecutive parts. 9
 1, 2, 1, 2, 3, 4, 2, 3, 5, 1, 2, 3, 6, 3, 4, 7, 8, 2, 3, 4, 4, 5, 9, 1, 2, 3, 4, 10, 5, 6, 11, 3, 4, 5, 12, 6, 7, 13, 2, 3, 4, 5, 14, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 15, 16, 8, 9, 17, 3, 4, 5, 6, 5, 6, 7, 18, 9, 10, 19, 2, 3, 4, 5, 6, 20, 1, 2, 3, 4, 5, 6, 6, 7, 8, 10, 11, 21, 4, 5, 6, 7, 22, 11, 12, 23, 7, 8, 9, 24 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS EXAMPLE Triangle begins: [1]; [2]; [1, 2], [3]; [4]; [2, 3], [5]; [1, 2, 3], [6]; [3, 4], [7]; [8]; [2, 3, 4], [4, 5], [9]; [1, 2, 3, 4], [10]; [5, 6], [11]; [3, 4, 5], [12]; [6, 7], [13]; [2, 3, 4, 5], [14]; [1, 2, 3, 4, 5], [4, 5, 6], [7, 8], [15]; [16]; [8, 9], [17]; [3, 4, 5, 6], [5, 6, 7], [18]; [9, 10], [19]; [2, 3, 4, 5, 6], [20]; [1, 2, 3, 4, 5, 6], [6, 7, 8], [10, 11], [21]; [4, 5, 6, 7], [22]; [11, 12], [23]; [7, 8, 9], [24]; [3, 4, 5, 6, 7], [12, 13], [25]; [5, 6, 7, 8], [26]; [2, 3, 4, 5, 6, 7], [8, 9, 10], [13, 14], [27]; [1, 2, 3, 4, 5, 6, 7], [28]; ... For n = 9 there are three partitions of 9 into consecutive parts, they are [9], [5, 4], [4, 3, 2], so the 9th row of triangle is [2, 3, 4], [4, 5], [9]. Note that in the below diagram the number of horizontal line segments in the n-th row equals A001227(n), the number of partitions of n into consecutive parts, so we can find the partitions of n into consecutive parts as follows: consider the vertical blocks of numbers that start exactly in the n-th row of the diagram, for example: for n = 15 consider the vertical blocks of numbers that start exactly in the 15th row. They are [1, 2, 3, 4, 5], [4, 5, 6], [7, 8], [15], equaling the 15th row of the above triangle. Row      _ 1       |1|_ 2       |_ 2|_ 3       |1|  3|_ 4       |2|_   4|_ 5       |_ 2|    5|_ 6       |1|3|_     6|_ 7       |2|  3|      7|_ 8       |3|_ 4|_       8|_ 9       |_ 2|  4|        9|_ 10      |1|3|  5|_        10|_ 11      |2|4|_   5|         11|_ 12      |3|  3|  6|_          12|_ 13      |4|_ 4|    6|           13|_ 14      |_ 2|5|_   7|_            14|_ 15      |1|3|  4|    7|             15|_ 16      |2|4|  5|    8|_              16|_ 17      |3|5|_ 6|_     8|               17|_ 18      |4|  3|  5|    9|_                18|_ 19      |5|_ 4|  6|      9|                 19|_ 20      |_ 2|5|  7|_    10|_                  20|_ 21      |1|3|6|_   6|     10|                   21|_ 22      |2|4|  4|  7|     11|_                    22|_ 23      |3|5|  5|  8|_      11|                     23|_ 24      |4|6|_ 6|    7|     12|_                      24|_ 25      |5|  3|7|_   8|       12|                       25|_ 26      |6|_ 4|  5|  9|_      13|_                        26|_ 27      |_ 2|5|  6|    8|       13|                         27|_ 28      |1|3|6|  7|    9|       14|                           28| ... The diagram is infinite. For more information about the diagram see A286001. For an amazing connection with sum of divisors function (A000203) see A237593. MATHEMATICA Table[With[{h = Floor[n/2] - Boole[EvenQ@ n]}, Append[Array[Which[Total@ # == n, #, Total@ Most@ # == n, Most[#], True, Nothing] &@ NestWhile[Append[#, #[[-1]] + 1] &, {#}, Total@ # <= n &, 1, h - # + 1] &, h], {n}]], {n, 24}] // Flatten (* Michael De Vlieger, Oct 22 2019 *) CROSSREFS Mirror of A299765. Row n has length A204217(n). Row sums give A245579. Column 1 gives A118235. Right border gives A000027. Records give A000027. Where records occur gives A285899. The number of partitions into consecutive parts in row n is A001227(n). For tables of partitions into consecutive parts see A286000 and A286001. Cf. A000203, A026792, A235791, A237048, A237591, A237593, A245092, A285914, A286013, A288529, A288772, A288773, A288774, A328361, A328362. Sequence in context: A205123 A108715 A119671 * A033787 A165073 A176846 Adjacent sequences:  A328362 A328363 A328364 * A328366 A328367 A328368 KEYWORD nonn,tabl AUTHOR Omar E. Pol, Oct 22 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 4 08:58 EDT 2020. Contains 333213 sequences. (Running on oeis4.)