Integers sequences A328348 and A328350 to A328356

Pierre-Alain Sallard

October 14, 2019

Abstract

The sequence A328348 is the building block for the calculation of the sums of positive integers whose decimal notation only uses two distinct, non-zero digits.

The sequences A328350 to A328356 are also building blocks for the calculation of the sums of positive integers, in the case where more than two distinct, non-zero digits are used .

1 Sums of whole numbers whose decimal notation only uses two distinct, non-zero digits

Let α and β be two distinct non-zero digits (i.e. $(\alpha, \beta) \in\{1,2, \ldots, 9\}^{2}$, with $\alpha \neq \beta$), let $n \in \mathbb{N}$, and let $E_{\alpha, \beta, n}$ be the set of whole numbers whose decimal notation only uses the α and β digits and that have at most n such digits. Formally,

$$
E_{\alpha, \beta, n}=\left\{x \in \mathbb{N} \mid \exists p \in \llbracket 0 ; n-1 \rrbracket, \exists\left(a_{0}, \ldots, a_{p}\right) \in\{\alpha, \beta\}^{p+1}, x=\sum_{i=0}^{p} a_{i} 10^{i}\right\}
$$

We define

$$
S_{\alpha, \beta, n}=\sum_{x \in E_{\alpha, \beta, n}} x
$$

We state that

$$
S_{\alpha, \beta, n}=(\alpha+\beta) \times u_{2, n}
$$

where

$$
\forall n \in \mathbb{N}, u_{2, n}=\frac{10.20^{n}-19.2^{n}+9}{171}
$$

The sequence $\left(u_{2, n}\right)_{n \in \mathbb{N}}=(0,1,23,467,9355,187131,3742683,74853787,1497075995, \ldots)$ corresponds to the A328348 OEIS sequence.

For example, with $\{\alpha, \beta\}=\{1,2\}$ and $n=3$, we have

$$
E_{1,2,3}=\{1,2,11,12,21,22,111,112,121,122,211,212,221,222\}
$$

and

$$
S_{1,2,3}=\sum_{x \in E_{1,2,3}} x=(1+2) \times u_{3}=1401
$$

Proof : by definition, $S_{\alpha, \beta, n}=\sum_{p=0}^{n-1} \sum_{\left(a_{0}, \ldots, a_{p}\right) \in\{\alpha, \beta\}^{p+1}} \sum_{i=0}^{p} a_{i} 10^{i}$. For a given $p \in$ $\llbracket 0 ; n-1 \rrbracket$, a given $\epsilon \in\{\alpha, \beta\}$ and a given $j \in \llbracket 0 ; p \rrbracket$, $\operatorname{Card}\left(\left\{\left(a_{0}, \ldots, a_{j-1}, \epsilon, a_{j+1}, \ldots, a_{p}\right) \mid\right.\right.$ $\left.\left(a_{i}\right)_{i \neq j} \in\{\alpha, \beta\}^{p}\right)=2^{p}$: it means that the digit α appears 2^{p} times in first position $(j=0), 2^{p}$ times in second position $(j=1)$, etc. Therefore, $\forall p \in \llbracket 0 ; n-1 \rrbracket, \quad \sum_{\left(a_{0}, \ldots, a_{p}\right) \in\{\alpha, \beta\}^{p+1}} \sum_{i=0}^{p} a_{i} 10^{i}=\alpha \times 2^{p} \times \sum_{i=0}^{p} 10^{i}+\beta \times 2^{p} \times \sum_{i=0}^{p} 10^{i}=$ $(\alpha+\beta) 2^{p} \sum_{i=0}^{p} 10^{i}=(\alpha+\beta) \frac{10.20^{p}-2^{p}}{9}$. Thus $S_{\alpha, \beta, n}=\frac{\alpha+\beta}{9} \sum_{p=0}^{n-1}\left(10.20^{p}-2^{p}\right)=$ $\frac{\alpha+\beta}{9 \times 19}\left(10.20^{n}-19.2^{n}+9\right)$.

Remark : it can be noted that, in the expression of $S_{\alpha, \beta, n}$, only the sum $\alpha+\beta$ matters and not the individual values of α and β. As a consequence, as soon as $\alpha+\beta=\alpha^{\prime}+\beta^{\prime}$, we have $S_{\alpha, \beta, n}=S_{\alpha^{\prime}, \beta^{\prime}, n}$. For example, for all positive integer $n, S_{1,7, n}=S_{2,6, n}=S_{3,5, n}$.

2 Generalisation : sums of whole numbers whose decimal notation only uses k distinct, nonzero digits

Instead of selecting only two distinct digits, lets take $k \in \llbracket 2 ; 9 \rrbracket$ distinct, non-zero digits and consider the set $E_{\alpha_{1}, \ldots, \alpha_{k}, n}$ of whole numbers whose decimal notation only uses $\alpha_{1}, \ldots, \alpha_{k}$ as digits and that have at most n such digits.
We define

$$
S_{\alpha_{1}, \ldots, \alpha_{k}, n}=\sum_{x \in E_{\alpha_{1}, \ldots, \alpha_{k}, n}} x
$$

With a proof similar to the above, it can be established that

$$
S_{\alpha_{1}, \ldots, \alpha_{k}, n}=\left(\sum_{i=1}^{k} \alpha_{i}\right) \times u_{k, n}
$$

where

$$
\forall n \in \mathbb{N}, u_{k, n}=\frac{10(k-1)(10 k)^{n}-(10 k-1) k^{n}+9}{9(k-1)(10 k-1)}
$$

The sequences appearing in the above formula are :

- for $k=3,\left(u_{3, n}\right)_{n \in \mathbb{N}}=(0,1,34,1033,31030,931021,27930994,837930913, \ldots)$ corresponds to the A328350 OEIS sequence.
- for $k=4,\left(u_{4, n}\right)_{n \in \mathbb{N}}=(0,1,45,1821,72925,2917341,116695005,4667805661, \ldots)$ corresponds to the A328351 OEIS sequence.
- for $k=5,\left(u_{5, n}\right)_{n \in \mathbb{N}}=(0,1,56,2831,141706,7086081,354307956,17715417331, \ldots)$ corresponds to the A328352 OEIS sequence.
- for $k=6,,\left(u_{6, n}\right)_{n \in \mathbb{N}}=(0,1,67,4063,244039,14643895,878643031,52718637847, \ldots)$ corresponds to the A328353 OEIS sequence.
- for $k=7,,\left(u_{7, n}\right)_{n \in \mathbb{N}}=(0,1,78,5517,386590,27064101,1894506678,132615604717, \ldots)$ corresponds to the A328354 OEIS sequence.
- for $k=8,,\left(u_{8, n}\right)_{n \in \mathbb{N}}=(0,1,89,7193,576025,46086681,3686971929,294958053913, \ldots)$ corresponds to the A328355 OEIS sequence.
- for $k=9,,\left(u_{9, n}\right)_{n \in \mathbb{N}}=(0,1,100,9091,819010,73718281,6634711720,597124652671, \ldots)$ corresponds to the A328356 OEIS sequence.

For example, with $k=5,\left\{\alpha_{1}, \ldots, \alpha_{5}\right\}=\{1,2,3,4,5\}$ and $n=2$, we have

$$
E_{1,2,3,4,5,2}=\{1,2,3,4,5,11,12,13,14,15,21,22,23,24,25, \ldots, 54,55\}
$$

and

$$
S_{1,2,3,4,5,2}=(1+2+3+4+5) \times u_{5,2}=15 \times 56=840
$$

