OFFSET
0,2
COMMENTS
a(n) = the number of such terms m in A328116 that m <= n.
Although in principle A276086 moves any n out of the "all hope lost" zone A100716 (where A328308 is always zero), back to its complement A048103, by comparing the ratio of this and A328309 it can be seen (see the Plot2-link in the Links-section) that such a transfer actually lessens the chances that by just iterating A003415 one could reach zero from there. Note also how the effect of the primorial base representation can be clearly seen in the folds and warps of that plot.
LINKS
PROG
(PARI)
up_to = 65537;
A003415checked(n) = if(n<=1, 0, my(f=factor(n), s=0); for(i=1, #f~, if(f[i, 2]>=f[i, 1], return(0), s += f[i, 2]/f[i, 1])); (n*s));
A276086(n) = { my(i=0, m=1, pr=1, nextpr); while((n>0), i=i+1; nextpr = prime(i)*pr; if((n%nextpr), m*=(prime(i)^((n%nextpr)/pr)); n-=(n%nextpr)); pr=nextpr); m; };
A328308(n) = if(!n, 1, while(n>1, n = A003415checked(n)); (n));
A328307list(up_to) = { my(v=vector(up_to), s=A328306(0)); for(i=1, up_to, s += A328306(i); v[i] = s); (v); };
v328307 = A328307list(up_to);
A328307(n) = if(!n, 1, v328307[n]);
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 12 2019
STATUS
approved