

A328301


Expansion of Product_{k>0} 1/(1  x^(k^k)).


2



1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 8, 9, 9, 9, 10, 11, 11, 11, 12, 13, 13, 13, 14, 15, 15, 15, 16, 17, 17, 17, 18, 19, 19, 19, 20, 21, 21, 22, 23, 24, 24, 25, 26, 27, 27, 28, 29, 30, 30, 31, 32, 33, 33, 34, 35, 36, 36, 37, 38, 39, 39
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,5


COMMENTS

Also number of partitions of n into parts k^k for k > 0.


LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..10000


FORMULA

G.f.: 1 + Sum_{n>0} x^(n^n) / Product_{k=1..n} (1  x^(k^k)).


EXAMPLE

G.f.: 1 + x/(1x) + x^4/((1x)*(1x^4)) + x^27/((1x)*(1x^4)*(1x^27)) + ... .


MAPLE

b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
b(n, i1)+(p> `if`(p>n, 0, b(np, i)))(i^i))
end:
a:= n> `if`(n<2, 1, b(n, floor((t> t/LambertW(t))(log(n))))):
seq(a(n), n=0..100); # Alois P. Heinz, Oct 12 2019


PROG

(PARI) N=99; x='x+O('x^N); m=1; while(N>=m^m, m++); Vec(1/prod(k=1, m1, 1x^k^k))


CROSSREFS

Cf. A000312, A001156, A003108, A064986, A328325.
Sequence in context: A128929 A257839 A075245 * A129253 A008652 A195120
Adjacent sequences: A328298 A328299 A328300 * A328302 A328303 A328304


KEYWORD

nonn


AUTHOR

Seiichi Manyama, Oct 12 2019


STATUS

approved



