login
A328268
Total number of nodes in all walks on cubic lattice starting at (0,0,0), ending at (0,0,n), remaining in the first (nonnegative) octant and using steps which are permutations of (-2,1,2), (-1,0,2), (-1,1,1), (0,0,1).
2
1, 2, 9, 36, 225, 1458, 11277, 92520, 829521, 7827750, 77868945, 805275756, 8628016761, 95164931610, 1076945117265, 12459200094864, 146980338550101, 1763951883200982, 21496281107991273, 265571585920327140, 3321596194293592593, 42009000779476030410
OFFSET
0,2
LINKS
Wikipedia, Lattice path
FORMULA
a(n) = (n+1) * A328267(n).
MAPLE
b:= proc(l) option remember; `if`(l[-1]=0, 1, (r-> add(
add(add(`if`(i+j+k=1, (h-> `if`(h[1]<0, 0, b(h)))(
sort(l-[i, j, k])), 0), k=r), j=r), i=r))([$-2..2]))
end:
a:= n-> (n+1)*b([0$2, n]):
seq(a(n), n=0..25);
MATHEMATICA
b[l_] := b[l] = If[Last[l] == 0, 1, Function[r, Sum[If[i + j + k == 1, Function[h, If[h[[1]] < 0, 0, b[h]]][Sort[l - {i, j, k}]], 0], {i, r}, {j, r}, {k, r}]][Range[-2, 2]]];
a[n_] := (n + 1) b[{0, 0, n}];
a /@ Range[0, 25] (* Jean-François Alcover, May 13 2020, after Maple *)
CROSSREFS
Cf. A328267.
Sequence in context: A305206 A101610 A111601 * A330346 A280351 A306721
KEYWORD
nonn,walk
AUTHOR
Alois P. Heinz, Oct 10 2019
STATUS
approved