login
A328215
Starts of runs of 4 consecutive lazy-Fibonacci-Niven numbers (A328212).
15
3674769, 17434975, 22711023, 26152125, 32784723, 41221725, 57846123, 93416568, 101681916, 122873490, 173504940, 225947148, 234209247, 259557450, 333681684, 377858544, 396241410, 413770056, 432640989, 443496447, 444571650, 484381323, 497625360, 556123167, 564869940
OFFSET
1,1
COMMENTS
Grundman found a(1) and proved that there are no runs of 5 consecutive lazy-Fibonacci-Niven numbers.
LINKS
Helen G. Grundman, Consecutive Zeckendorf-Niven and lazy-Fibonacci-Niven numbers, Fibonacci Quarterly, Vol. 45, No. 3 (2007), pp. 272-276.
EXAMPLE
3674769 is in the sequence since 3674769, 3674770, 3674771 and 3674772 are in A328212: A112310(3674769) = 21 is a divisor of 3674769, A112310(3674770) = 22 is a divisor of 3674770, A112310(3674771) = 17 is a divisor of 3674771, and A112310(3674772) = 18 is a divisor of 3674772.
MATHEMATICA
ooQ[n_] := Module[{k = n}, While[k > 3, If[Divisible[k, 4], Return[True], k = Quotient[k, 2]]]; False]; c = 0; cn = 0; k = 1; s = {}; v = Table[-1, {4}]; While[cn < 10, If[! ooQ[k], c++; d = Total@IntegerDigits[k, 2]; If[Divisible[c, d], v = Join[Rest[v], {c}]; If[AllTrue[Differences[v], # == 1 &], cn++; AppendTo[s, c - 3]]]]; k++]; s
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Oct 07 2019
EXTENSIONS
More terms from Amiram Eldar, Oct 23 2019
STATUS
approved