

A328215


Starts of runs of 4 consecutive lazyFibonacciNiven numbers (A328212).


5



3674769, 17434975, 22711023, 26152125, 32784723, 41221725, 57846123, 93416568, 101681916, 122873490, 173504940, 225947148, 234209247, 259557450, 333681684, 377858544, 396241410, 413770056, 432640989, 443496447, 444571650, 484381323, 497625360, 556123167, 564869940
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Grundman found a(1) and proved that there are no runs of 5 consecutive lazyFibonacciNiven numbers.


LINKS

Amiram Eldar, Table of n, a(n) for n = 1..72
Helen G. Grundman, Consecutive ZeckendorfNiven and lazyFibonacciNiven numbers, Fibonacci Quarterly, Vol. 45, No. 3 (2007), pp. 272276.


EXAMPLE

3674769 is in the sequence since 3674769, 3674770, 3674771 and 3674772 are in A328212: A112310(3674769) = 21 is a divisor of 3674769, A112310(3674770) = 22 is a divisor of 3674770, A112310(3674771) = 17 is a divisor of 3674771, and A112310(3674772) = 18 is a divisor of 3674772.


MATHEMATICA

ooQ[n_] := Module[{k = n}, While[k > 3, If[Divisible[k, 4], Return[True], k = Quotient[k, 2]]]; False]; c = 0; cn = 0; k = 1; s = {}; v = Table[1, {4}]; While[cn < 10, If[! ooQ[k], c++; d = Total@IntegerDigits[k, 2]; If[Divisible[c, d], v = Join[Rest[v], {c}]; If[AllTrue[Differences[v], # == 1 &], cn++; AppendTo[s, c  3]]]]; k++]; s


CROSSREFS

Cf. A112310, A141769, A328212.
Sequence in context: A080662 A080660 A080659 * A216002 A187644 A136287
Adjacent sequences: A328212 A328213 A328214 * A328216 A328217 A328218


KEYWORD

nonn


AUTHOR

Amiram Eldar, Oct 07 2019


EXTENSIONS

More terms from Amiram Eldar, Oct 23 2019


STATUS

approved



