login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Starts of runs of 3 consecutive lazy-Fibonacci-Niven numbers (A328212).
23

%I #10 Jan 05 2025 19:51:41

%S 27312,37504,48060,83248,198254,269856,319694,386136,423520,434300,

%T 518175,525672,539800,572184,690858,701118,793799,886534,998866,

%U 1015035,1258444,1396582,1409058,1511600,1557422,1680378,1729398,1753818,2044768,2136263,2310624,2396438,2421024

%N Starts of runs of 3 consecutive lazy-Fibonacci-Niven numbers (A328212).

%H Amiram Eldar, <a href="/A328214/b328214.txt">Table of n, a(n) for n = 1..79</a>

%H Helen G. Grundman, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/45-3/grundman.pdf">Consecutive Zeckendorf-Niven and lazy-Fibonacci-Niven numbers</a>, Fibonacci Quarterly, Vol. 45, No. 3 (2007), pp. 272-276.

%e 27312 is in the sequence since 27312, 27313 and 27314 are in A328212: A112310(27312) = 16 is a divisor of 27312, A112310(27312) = 13 is a divisor of 27313, and A112310(27314) = 14 is a divisor of 27314.

%t ooQ[n_] := Module[{k = n}, While[k > 3, If[Divisible[k, 4], Return[True], k = Quotient[k, 2]]]; False]; c = 0; cn = 0; k = 1; s = {}; v = Table[-1, {3}]; While[cn < 33, If[! ooQ[k], c++; d = Total@IntegerDigits[k, 2]; If[Divisible[c, d], v = Join[Rest[v], {c}]; If[AllTrue[Differences[v], # == 1 &], cn++; AppendTo[s, c - 2]]]]; k++]; s

%Y Cf. A112310, A154701, A328212.

%K nonn

%O 1,1

%A _Amiram Eldar_, Oct 07 2019