login
Expansion of (theta_3(z)*theta_3(23z) + theta_2(z)*theta_2(23z))^5.
3

%I #10 Feb 19 2020 08:36:15

%S 1,10,40,80,90,112,260,480,700,1050,1520,2160,2980,3920,5920,8160,

%T 9530,12800,16620,20560,26672,30720,38960,47690,52020,66250,77380,

%U 87940,101600,112720,134304,147920,171020,185760,220160,230400,263550,292080,341200,346820,423984,425680,516480,527600,619120

%N Expansion of (theta_3(z)*theta_3(23z) + theta_2(z)*theta_2(23z))^5.

%D Köklüce, Bülent. "Cusp forms in S_6 (Gamma_ 0(23)), S_8 (Gamma_0 (23)) and the number of representations of numbers by some quadratic forms in 12 and 16 variables." The Ramanujan Journal 34.2 (2014): 187-208. See F_k, p. 188.

%H Jinyuan Wang, <a href="/A328093/b328093.txt">Table of n, a(n) for n = 0..1000</a>

%o (PARI) a(n) = polcoeff((1 + 2*x*Ser(qfrep([2, 1; 1, 12], n, 1)))^5, n); \\ _Jinyuan Wang_, Feb 19 2020

%Y Cf. A028959, A028659, A028660, A328094.

%K nonn

%O 0,2

%A _N. J. A. Sloane_, Oct 17 2019