login
A328031
Upper bound for the determinant of an n X n matrix whose entries are a permutation of the multiset {1^n,...,n^n}.
3
1, 1, 3, 18, 172, 2343, 42439, 976050, 27583338, 934173632, 37180409223, 1711870023666, 90007747560742, 5346164992890599, 355442084718552178, 26244000000000000000, 2137205155719002036203, 190811368062993357765186, 18577775646585813239195436, 1963166636163973976912956096
OFFSET
0,3
LINKS
Markus Sigg, Gasper's determinant theorem, revisited, arXiv:1804.02897 [math.CO], 2018.
FORMULA
a(n) = floor(n^n*((n+1)/2)*((n+1)/12)^((n-1)/2)) (Corollary 3 in M. Sigg's article).
PROG
(PARI) for(n=1, 20, print1(floor(n^n*((n+1)/2)*((n+1)/12)^((n-1)/2)), ", "))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Hugo Pfoertner, Oct 02 2019
STATUS
approved