This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A328029 Lexicographically earliest permutation of [1,2,...,n] maximizing the determinant of an n X n circulant matrix that uses this permutation as first row, written as triangle T(n,k), k <= n. 4
 1, 2, 1, 1, 2, 3, 2, 1, 4, 3, 1, 2, 4, 3, 5, 2, 1, 6, 3, 5, 4, 1, 2, 4, 6, 5, 3, 7, 2, 1, 5, 4, 8, 3, 6, 7, 1, 2, 4, 8, 6, 7, 5, 3, 9, 1, 2, 10, 7, 8, 3, 9, 5, 4, 6, 1, 2, 6, 11, 7, 9, 4, 8, 5, 3, 10, 2, 1, 7, 3, 12, 5, 9, 10, 4, 6, 11, 8, 1, 2, 12, 13, 5, 10, 6, 11, 3, 9, 8, 4, 7 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS For n <= 9 the corresponding circulant matrices are n X n Latin squares with maximum determinant A309985(n). It is conjectured that this also holds for n > 9. See Mathematics Stack Exchange link. LINKS Hugo Pfoertner, Table of n, a(n) for n = 1..120, rows 1..15 of triangle, flattened Mathematics Stack Exchange, Maximum determinant of Latin squares, (2014), (2016). Wikipedia, Circulant matrix. EXAMPLE The triangle starts   1;   2,  1;   1,  2,  3;   2,  1,  4,  3;   1,  2,  4,  3,  5;   2,  1,  6,  3,  5,  4;   1,  2,  4,  6,  5,  3,  7;   2,  1,  5,  4,  8,  3,  6,  7;   1,  2,  4,  8,  6,  7,  5,  3,  9;   1,  2, 10,  7,  8,  3,  9,  5,  4,  6; . The 4th row of the triangle T(4,1)..T(4,4) = a(7)..a(10) is [2,1,4,3] because this is the lexicographically earliest permutation of [1,2,3,4] producing a circulant 4 X 4 matrix with maximum determinant A328030(4) = 160.   [2, 1, 4, 3;    3, 2, 1, 4;    4, 3, 2, 1;    1, 4, 3, 2]. All lexicographically earlier permutations lead to smaller determinants, with [1,2,3,4] and [1,4,3,2] producing determinants = -160. MATHEMATICA f[n_] := (p = Permutations[Table[i, {i, n}]]; L = Length[p];   det = Max[     Table[Det[Reverse /@ Partition[p[[i]], n, 1, {1, 1}]], {i, 1,       L}]]; mat =    Table[Reverse /@ Partition[p[[i]], n, 1, {1, 1}], {i, 1,      L}]); n = 1; While[n <= 10, ClearSystemCache[[]]; f[n]; triangle = Parallelize[Select[mat, Max[Det[#]] == det &]]; Print[SortBy[triangle, Less][[1]][[1]]]; n++]; (* Kebbaj Mohamed Reda, Dec 03 2019 *) (* alternate program *) n1 = DialogInput[{name = ""},   Column[{"Input n :", InputField[Dynamic[name], String],     Button["Proceed", DialogReturn[name], ImageSize -> Automatic]}]]; f[n_] := (p = Permutations[Table[i, {i, n}]]; L = Length[p];   det = Max[     Table[Det[Reverse /@ Partition[p[[i]], n, 1, {1, 1}]], {i, 1,       L}]]; mat =    Table[Reverse /@ Partition[p[[i]], n, 1, {1, 1}], {i, 1,      L}]); n = 1; sequance = {}; While[n <= ToExpression[n1], ClearSystemCache[[]]; f[n]; triangle = Parallelize[Select[mat, Max[Det[#]] == det &]]; AppendTo[sequance, SortBy[triangle, Less][[1]][[1]]]; n++]; Flatten[sequance] (* Kebbaj Mohamed Reda, Dec 03 2019 *) CROSSREFS Cf. A301371, A309985, A328030, A328031, A328062. Sequence in context: A005794 A280860 A208993 * A201384 A238348 A143066 Adjacent sequences:  A328026 A328027 A328028 * A328030 A328031 A328032 KEYWORD nonn,tabl,changed AUTHOR Hugo Pfoertner, Oct 02 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 14 07:03 EST 2019. Contains 329978 sequences. (Running on oeis4.)