login
T(n, k) = k!*(n-k)!/(floor(k/2)!*floor((n-k)/2)!)^2. Triangle read by rows, 0 <= k <= n.
2

%I #9 Oct 19 2019 10:49:11

%S 1,1,1,2,1,2,6,2,2,6,6,6,4,6,6,30,6,12,12,6,30,20,30,12,36,12,30,20,

%T 140,20,60,36,36,60,20,140,70,140,40,180,36,180,40,140,70,630,70,280,

%U 120,180,180,120,280,70,630,252,630,140,840,120,900,120,840,140,630,252

%N T(n, k) = k!*(n-k)!/(floor(k/2)!*floor((n-k)/2)!)^2. Triangle read by rows, 0 <= k <= n.

%F T(n, k) = s(k)*s(n-k) where s(n) = A056040(n).

%e 1;

%e 1, 1;

%e 2, 1, 2;

%e 6, 2, 2, 6;

%e 6, 6, 4, 6, 6;

%e 30, 6, 12, 12, 6, 30;

%e 20, 30, 12, 36, 12, 30, 20;

%e 140, 20, 60, 36, 36, 60, 20, 140;

%e 70, 140, 40, 180, 36, 180, 40, 140, 70;

%e 630, 70, 280, 120, 180, 180, 120, 280, 70, 630;

%p T := (n, k) -> k!*(n-k)!/(iquo(k, 2)!*iquo(n-k, 2)!)^2:

%p seq(seq(T(n,k), k=0..n), n=0..10);

%Y Row sums in A328000. Central column in A327998.

%Y Cf. A056040.

%K tabl,nonn

%O 0,4

%A _Peter Luschny_, Oct 01 2019