login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A327916 Triangle T(k, n) read by rows: Array A(k, n) = 2^k*(k + 1+ n), k >= 0, n >= 0, read by antidiagonals upwards. 1

%I

%S 1,4,3,12,8,5,32,20,12,7,80,48,28,16,9,192,112,64,36,20,11,448,256,

%T 144,80,44,24,13,1024,576,320,176,96,52,28,15,2304,1280,704,384,208,

%U 112,60,32,17,5120,2816,1536,832,448,240,128,68,36,19,11264,6144,3328,1792,960,512,272,144,76,40,21

%N Triangle T(k, n) read by rows: Array A(k, n) = 2^k*(k + 1+ n), k >= 0, n >= 0, read by antidiagonals upwards.

%C The array A(k, n) arises from the following Pascal type triangles PTodd(k), k >= 0 based on the positive odd integers A005408.

%C For example, the Pascal type triangle PTodd(k), for k = 3 is

%C 1 3 5 7

%C 4 8 12

%C 12 20

%C 32

%C Taken upside-down such triangles become so called addition-towers of height k+1 (Rechenturm in German elementary schools; thanks to my correspondent Bennet D.), starting with any k+1 numbers. Here the positive odd numbers are used.

%C The sequence s of the final number of these Pascal type triangles PT(k), for k >= 0, begins 1, 4, 12, 32, ...; s(k) = (k+1)*2^k = A001787(k+1), for k >= 0.

%C For k -> infinity the left aligned row sequences build the array A(k, n), with k >= 0 and n >= 0, namely A(k, n) = 2^k*(k + 2*n + 1), This array begins:

%C k\n 0 1 2 3 4 5 ...

%C -------------------------------

%C 0: 1 3 5 7 9 11 ... {A005408(n)}

%C 1: 4 8 12 16 20 24 ... {A008586(n+1)}

%C 2: 12 20 28 36 44 52 ... {A017113(n+1)}

%C 3: 32 48 64 80 96 112 ... {A008598(n+2)}

%C 4: 80 112 144 176 208 240 ... {16*A005408(n+2)}

%C 5: 192 256 320 384 448 512 ... {A152691(n+3)}

%C 6: 448 576 704 832 960 1088 ... {64*A005408(n+3)}

%C ...

%C The sequence s, the first (n=0) column of A, is always the binomial transform of the first (k=0) row in A.

%C A(k, n) = Sum_{j=0..k} binomial(k, j)*(2*(n+j)+1) = 2^k*(k + 1+ n), for k >= 0 and n >= 0.

%C The corresponding antidiagonal-upwards read triangle is T(k, n) = A(k-n, n) = 2^(k-n)*(k + n + 1), n >= 0, k=0..n.

%C If the nonnegative integers A001477 are used as k = 0 row of the array Anneg(k, n) = 2^(k-1)*(2*n + k), for k>=0, n >= 0, with the triangle Tnneg(k, n) = Anneg(k-n, n) = (n + k)*2^(k-n-1), k >= 0, n = 0..k, then the s sequence is snneg(k) = Tnneg(k, 0) = k*2^{k-1} = A001787(k), the binomial transform of the sequence{A001477(n)}_{n>=0}. The triangle Tnneg begins [0], [1, 1], [4, 3, 2], [12, 8, 5, 3], [32, 20, 12, 7, 4], ... . See A062111 and the row reversed triangle A152920 for other versions.

%F Array A(k, n) = Sum_{j=0..k} binomial(k, j)*(2*(n+j) + 1) = 2^k*(k + 1+ n), for k >= 0 and n >= 0.

%F Triangle T(k, n) = A(k-n, n) = 2^(k-n)*(k + n + 1), n >= 0, k=0..n.

%F Recurrence: T(k, 0) = (k+1)*2^k = A001787(k+1), for k >= 0, and T(k, n) = T(k, n-1) - T(k-1, n-1), for n >= 1, k >= 1, with T(k, n) = 0 if k < n.

%F O.g.f. for row polynomials: G(z,x) = Sum_{n=0..k} R(k, x)*z^n =

%F (1 + x*z*(1 - 4*z))/((1 - 2*z)^2*(1 - x*z)^2).

%F T(k, 0) = Sum_{n=0..k} binomial(k,n)*T(n, n), k >= 0 (binomial transform).

%e The triangle T(k, n) begins:

%e k/n 0 1 2 3 4 5 6 7 8 9 10 ...

%e ---------------------------------------------------

%e 0: 1

%e 1: 4 3

%e 2: 12 8 5

%e 3: 32 20 12 7

%e 4: 80 48 28 16 9

%e 5: 192 112 64 36 20 11

%e 6: 448 256 144 80 44 24 13

%e 7: 1024 576 320 176 96 52 28 15

%e 8: 2304 1280 704 384 208 112 60 32 17

%e 9: 5120 2816 1536 832 448 240 128 68 36 19

%e 10: 11264 6144 3328 1792 960 512 272 144 76 40 21

%e ...

%t Table[2^#*(# + 1 + 2 n) &[k - n], {k, 0, 10}, {n, 0, k}] // Flatten (* _Michael De Vlieger_, Oct 03 2019 *)

%Y Column sequences without leading zeros are for n=0..9: A001787(n+1), A001792(n+1), A045623(n+2), A045891(n+3), A034007(n+4), A111297(n+3), A159694(n+1), A159695(n+1), A159696(n+1), A159697(n+1).

%Y The sequence of (sub)digonal k, for k >= 0, is the row k sequence of array A: {(k + 2*n + 1)*2^k}_{k >= 0}.

%Y Row sums: A213569(k+1), k >= 0 (see the _J. M. Bergot_ comments there).

%Y Cf. A06211, A152920.

%K nonn,easy,tabl

%O 0,2

%A _Wolfdieter Lang_, Oct 03 2019

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 13 03:41 EST 2019. Contains 329968 sequences. (Running on oeis4.)