login
A327868
Number of achiral loops (necklaces or bracelets) of length n with integer entries that cover an initial interval of positive integers.
2
1, 1, 2, 3, 8, 13, 44, 75, 308, 541, 2612, 4683, 25988, 47293, 296564, 545835, 3816548, 7087261, 54667412, 102247563, 862440068, 1622632573, 14857100084, 28091567595, 277474957988, 526858348381, 5584100659412, 10641342970443, 120462266974148, 230283190977853
OFFSET
0,3
COMMENTS
Achiral loops may also be called periodic palindromes.
LINKS
FORMULA
a(n) = (1/2)*Sum_{k=0..n} k!*(Stirling2(floor((n+1)/2), k) + Stirling2(ceiling((n+1)/2), k)) for n > 0.
a(2n-1) = A000670(n), a(2n) = A005649(n). - Michael Somos, May 04 2022
EXAMPLE
The a(4) = 8 achiral loops are:
1111,
1122, 1112, 1212, 1222,
1213, 1232, 1323.
G.f. = 1 + x + 2*x^2 + 3*x^3 + 8*x^4 + 13*x^5 + 44*x^6 + 75*x^7 + ... - Michael Somos, May 04 2022
MATHEMATICA
a[ n_] := If[n < 0, 0, Sum[ k!*(StirlingS2[Quotient[n+1, 2], k] + StirlingS2[Quotient[n+2, 2], k]), {k, 0, n+1}]/2]; (* Michael Somos, May 04 2022 *)
a[ n_] := If[n < 0, 0, With[{m = Quotient[n+1, 2]},
m!*SeriesCoefficient[1/(2 - Exp@x)^Mod[n, 2, 1], {x, 0, m}]]]; (* Michael Somos, May 04 2022 *)
PROG
(PARI) a(n)={if(n<1, n==0, sum(k=0, n, k!*(stirling((n+1)\2, k, 2)+stirling(n\2+1, k, 2)))/2)}
CROSSREFS
Row sums of A305540.
Sequence in context: A129873 A025575 A077055 * A145929 A153865 A369774
KEYWORD
nonn
AUTHOR
Andrew Howroyd, Sep 28 2019
STATUS
approved