OFFSET
1,2
LINKS
FORMULA
For n > 1, Sum_{k=0..2*prime(n)-2} T(n,k)*x^k == (-1)^((p - 1)/2) * p mod ((x^p - 1)/(x - 1)) where p is n-th prime.
EXAMPLE
Triangle begins
[1, 4, 4],
[1, 4, 4, 0, 0],
[1, 4, 4, 0, 4, 8, 0, 0, 4],
[1, 4, 8, 8, 8, 8, 8, 0, 4, 0, 0, 0, 0],
[1, 4, 4, 4, 12, 12, 12, 8, 12, 12, 12, 0, 8, 8, 8, 0, 0, 0, 4, 0, 0],
[1, 4, 4, 4, 12, 8, 4, 8, 4, 4, 12, 8, 12, 24, 8, 8, 8, 0, 4, 8, 4, 8, 8, 0, 4],
...
------------------------------------------
1 + 4*x + 4*x^2 = 4*(x^3 - 1)/(x - 1) - 3.
1 + 4*x + 4*x^2 + 4*x^4 + 8*x^5 + 4*x^8 = 4 * (x^4 - x^3 + 2*x - 1)*(x^5 - 1)/(x - 1) + 5.
1 + 4*x + 8*x^2 + 8*x^3 + 8*x^4 + 8*x^5 + 8*x^6 + 4*x^8 = 4 * (x^2 - x + 2)*(x^7 - 1)/(x - 1) - 7.
PROG
(PARI) forprime(p=2, 30, print(Vecrev((sum(k=0, p-1, (1+kronecker(k, p))*x^k))^2, 2*p-1), ", "))
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Seiichi Manyama, Sep 28 2019
STATUS
approved