login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Expansion of Product_{k>=1} B(x^k), where B(x) is the g.f. of A092869.
2

%I #17 Sep 29 2019 20:22:10

%S 1,-1,-1,1,-1,1,1,-3,1,2,0,2,-2,-2,-1,3,1,-5,2,0,0,8,-4,-7,5,-2,0,1,

%T -8,0,12,2,-3,-1,-7,9,4,-7,-7,-6,10,9,2,-6,-14,15,3,-15,19,-30,6,37,

%U -31,10,9,-23,20,4,-29,4,14,4,-13,23,-14,-19,39,-29,-23,35,0,-34,48

%N Expansion of Product_{k>=1} B(x^k), where B(x) is the g.f. of A092869.

%H Seiichi Manyama, <a href="/A327852/b327852.txt">Table of n, a(n) for n = 0..1000</a>

%F G.f.: Product_{i>=1} Product_{j>=1} (1-x^(i*(8*j-1))) * (1-x^(i*(8*j-7))) / ((1-x^(i*(8*j-3))) * (1-x^(i*(8*j-5)))).

%F G.f.: Product_{k>=1} (1-x^k)^A035185(k).

%o (PARI) N=66; x='x+O('x^N); Vec(prod(k=1, N, (1-x^k)^sumdiv(k, d, kronecker(2, d))))

%Y Product_{k>=1} (1 - x^k)^(Sum_{d|k} (b/d)), where (m/n) is the Kronecker symbol: this sequence (b=2), A288007 (b=4), A327688 (b=5).

%Y Cf. A035185, A092869, A327851.

%K sign

%O 0,8

%A _Seiichi Manyama_, Sep 28 2019