login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A327840 Numbers m that divide 4^m + 3. 5
1, 7, 16387, 4509253, 24265177, 42673920001, 103949349763, 12939780075073 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Number of solutions < 10^9 to k^n == k-1 (mod n): 1 (if k = 1), 188 (if k = 2, see A006521), 5 (if k = 3, see A015973), 5 (if k = 4, see this sequence), 5 (if k = 5), 10 (if k = 6), 10 (if k = 7), 7 (if k = 8), 5 (if k = 9), 8 (if k = 10), 11 (if k = 11), 8 (if k - 12), 9 (if k = 13), 4 (if k = 14), 3 (if k = 15), 6 (if k = 16), 7 (if k = 17), 7 (if k = 18), ...

a(9) > 10^15. - Max Alekseyev, Nov 10 2022

LINKS

Table of n, a(n) for n=1..8.

MATHEMATICA

Select[Range[10^7], IntegerQ[(PowerMod[4, #, # ]+3)/# ]&] (* Metin Sariyar, Sep 28 2019 *)

PROG

(Magma) [1] cat [n: n in [1..10^8] | Modexp(4, n, n) + 3 eq n];

(PARI) is(n)=Mod(4, n)^n==-3 \\ Charles R Greathouse IV, Sep 29 2019

CROSSREFS

Solutions to k^n == 1-k (mod n): A006521 (k = 2), A015973 (k = 3), this sequence (k = 4), A123047 (k = 5), A327943 (k = 6).

Solutions to 4^n == k (mod n): A000079 (k = 0), A015950 (k = -1), A014945 (k = 1), A130421 (k = 2), this sequence (k = -3), A130422 (k = 3).

Cf. A015940, A253208.

Sequence in context: A280813 A203685 A134645 * A115997 A013786 A351326

Adjacent sequences: A327837 A327838 A327839 * A327841 A327842 A327843

KEYWORD

nonn,more

AUTHOR

Juri-Stepan Gerasimov, Sep 27 2019

EXTENSIONS

a(6)-a(7) from Giovanni Resta, Sep 29 2019

a(8) from Max Alekseyev, Nov 10 2022

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 08:35 EST 2022. Contains 358515 sequences. (Running on oeis4.)