The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A327827 Sum of multinomials M(n; lambda), where lambda ranges over all partitions of n into parts incorporating 1. 3

%I

%S 0,1,2,9,40,235,1476,11214,91848,859527,8710300,97675138,1179954612,

%T 15490520786,217602374458,3280028076615,52571985879600,

%U 895913825750191,16140560853800556,307048409240931810,6143666813617775100,129096480664676773542,2840750997343361802150

%N Sum of multinomials M(n; lambda), where lambda ranges over all partitions of n into parts incorporating 1.

%H Alois P. Heinz, <a href="/A327827/b327827.txt">Table of n, a(n) for n = 0..450</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Multinomial_theorem#Multinomial_coefficients">Multinomial coefficients</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_(number_theory)">Partition (number theory)</a>

%F a(n) ~ c * n!, where c = A247551 = 2.5294774720791526481801161542539542411787... - _Vaclav Kotesovec_, Sep 28 2019

%p b:= proc(n, i, k) option remember; `if`(n=0, 1,

%p `if`(i>n, 0, b(n, i+1, `if`(i=k, 0, k))+

%p `if`(i=k, 0, b(n-i, i, k)*binomial(n, i))))

%p end:

%p a:= n-> b(n, 1, 0)-b(n, 1\$2):

%p seq(a(n), n=0..23);

%Y Column k=1 of A327801.

%K nonn

%O 0,3

%A _Alois P. Heinz_, Sep 26 2019

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 28 11:01 EST 2020. Contains 332323 sequences. (Running on oeis4.)