The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A327822 Numbers k such that when cyclically permuting the digits of k any number of times, any prime obtained is followed by a composite number and vice-versa. 0
 14, 16, 19, 20, 23, 29, 30, 32, 34, 35, 38, 41, 43, 47, 50, 53, 59, 61, 67, 70, 74, 76, 83, 89, 91, 92, 95, 98, 1015, 1018, 1070, 1075, 1099, 1132, 1136, 1163, 1216, 1238, 1274, 1303, 1321, 1339, 1361, 1475, 1510, 1517, 1535, 1570, 1574, 1612, 1630, 1631, 1636 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS EXAMPLE When cyclically permuting the digits of 961990 one gets the numbers 961990, 619909, 199096, 990961, 909619, 96199 and these numbers are composite, prime, composite, prime, composite, prime, respectively, so 961990 (and each of these cyclic permutations except 96199) is a term of the sequence. A more graphical representation:        961990              C       /      \           /   \   096199   619909       P     P      |        |         |     |   909619   199096       C     C       \      /           \   /        990961              P PROG (PARI) eva(n) = subst(Pol(n), x, 10) rot(n) = if(#Str(n)==1, v=vector(1), v=vector(#n-1)); for(i=2, #n, v[i-1]=n[i]); u=vector(#n); for(i=1, #n, u[i]=n[i]); v=concat(v, u[1]); v is(n) = my(nn=#Str(n), u=[], v=vector(nn, x, x%2==0), w=vector(nn, x, x%2==1), d=digits(n), r=rot(d)); if(nn%2==1, return(0)); u=concat(u, [ispseudoprime(eva(d))]); u=concat(u, ispseudoprime(eva(r))); while(1, r=rot(r); if(r==d, if(u==v || u==w, return(1)); return(0)); u=concat(u, ispseudoprime(eva(r)))) CROSSREFS Cf. A068652, A068654, A270083. Sequence in context: A034305 A091898 A061365 * A102107 A217707 A176686 Adjacent sequences:  A327819 A327820 A327821 * A327823 A327824 A327825 KEYWORD nonn,base AUTHOR Felix FrÃ¶hlich, Sep 26 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 21 13:52 EST 2020. Contains 331113 sequences. (Running on oeis4.)