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Given 𝑟 and a finite field 𝐹𝑘, we are interested in the question: how does 𝛷𝑟(𝑥) 

factor over 𝐹𝑘  ( 𝛷𝑟(𝑥)  is the 𝑟  th cyclotomic polynomial)? In the following 

discussion, let 𝑟 = 𝑝𝑒𝑠, where 𝑝 = char(𝐹𝑘), 𝑝 ∤ 𝑠. 

 

Lemma 1. ∀𝑎 ∈ 𝐹𝑘𝑛 , (𝑥 − 𝑎)(𝑥 − 𝑎𝑘) … (𝑥 − 𝑎𝑘𝑛−1
) ∈ 𝐹𝑘[𝑥]. 

This is obviously true if 𝑎 = 0. Now suppose 𝑎 ≠ 0. 

Note that the coefficient of 𝑥𝑛−𝑚  of (𝑥 − 𝑎)(𝑥 − 𝑎𝑘) … (𝑥 − 𝑎𝑘𝑛−1
)  is 

(−1)𝑚𝑆𝑚, where 

𝑆𝑚 = ∑ 𝑎𝑏𝑛−1𝑘𝑛−1+𝑏𝑛−2𝑘𝑛−2+⋯+𝑏1𝑘+𝑏0

𝑏𝑛−1+𝑏𝑛−2+⋯+𝑏1+𝑏0=𝑚,𝑏𝑖∈{0,1}

. 

Lemma 1 is equivalent to the fact that 𝑆𝑚 ∈ 𝐹𝑘 , 𝑚 = 0,1, … , 𝑛, which is further 

equivalent to 𝑆𝑚
𝑘 = 𝑆𝑚, 𝑚 = 0,1, … , 𝑛. 

By the property of finite fields, we have 

𝑆𝑚
𝑘 = ( ∑ 𝑎𝑏𝑛−1𝑘𝑛−1+𝑏𝑛−2𝑘𝑛−2+⋯+𝑏1𝑘+𝑏0

𝑏𝑛−1+𝑏𝑛−2+⋯+𝑏1+𝑏0=𝑚,𝑏𝑖∈{0,1}

)

𝑘

 

= ∑ (𝑎𝑏𝑛−1𝑘𝑛−1+𝑏𝑛−2𝑘𝑛−2+⋯+𝑏1𝑘+𝑏0)
𝑘

𝑏𝑛−1+𝑏𝑛−2+⋯+𝑏1+𝑏0=𝑚,𝑏𝑖∈{0,1}

 

= ∑ 𝑎𝑘(𝑏𝑛−1𝑘𝑛−1+𝑏𝑛−2𝑘𝑛−2+⋯+𝑏1𝑘+𝑏0)

𝑏𝑛−1+𝑏𝑛−2+⋯+𝑏1+𝑏0=𝑚,𝑏𝑖∈{0,1}

 

= ∑ 𝑎𝑏𝑛−1𝑘𝑛+𝑏𝑛−2𝑘𝑛−1+⋯+𝑏1𝑘2+𝑏0𝑘

𝑏𝑛−1+𝑏𝑛−2+⋯+𝑏1+𝑏0=𝑚,𝑏𝑖∈{0,1}

 

= ∑ 𝑎𝑏𝑛−1·1+𝑏𝑛−2𝑘𝑛−1+⋯+𝑏1𝑘2+𝑏0𝑘

𝑏𝑛−1+𝑏𝑛−2+⋯+𝑏1+𝑏0=𝑚,𝑏𝑖∈{0,1}

(By 𝑎𝑘𝑛−1 = 1) = 𝑆𝑚, 

which is what we wanted. 

By Lemma 1, we can see that for any 𝑎 ∈ 𝐹𝑘𝑛 , (𝑥 − 𝑎)(𝑥 − 𝑎𝑘) … (𝑥 − 𝑎𝑘𝑛−1
) 

is a polynomial acting as a bridge between 𝐹𝑘𝑛  and 𝐹𝑘. For convenience, we write 

𝑃𝑎(𝑥) ≔ (𝑥 − 𝑎)(𝑥 − 𝑎𝑘) … (𝑥 − 𝑎𝑘𝑛−1
), ∀𝑎 ∈ 𝐹𝑘𝑛 . 

 

Now we first consider the case 𝑒 = 0. Write 𝑛 = ord𝑠(𝑘), then 𝑘𝑛 ≡ 1 (mod 𝑠). 

Since that the multiplicative group of 𝐹𝑘𝑛  is cyclic with 𝑘𝑛 − 1 elements, 𝑥𝑠 − 1 

factors completely into linear polynomials: 



2 

 

𝑥𝑠 − 1 = ∏(𝑥 − 𝑎𝑖)

𝑠

𝑖=1

, 

where 𝑎 is some element in 𝐹𝑘𝑛 . By the definition of cyclotomic polynomials, over 

𝐹𝑘𝑛 , 𝛷𝑠(𝑥) also factors completely into linear polynomials: 

𝛷𝑠(𝑥) = ∏ (𝑥 − 𝑎𝑖)
1≤𝑖≤𝑠

gcd(𝑖,𝑠)=1

. 

Actually, we would rather say "𝑖 ∈ ℤ𝑠
×" than say "gcd(𝑖, 𝑠) = 1", where ℤ𝑠

× is the 

multiplicative group of integers modulo 𝑠. Note that 

< 𝑘 >= {𝑒, 𝑘, 𝑘
2

, … , 𝑘
𝑛−1

} = {1, 𝑘, 𝑘2, … , 𝑘𝑛−1}, 

then, 

ℤ𝑠
×/< 𝑘 >= {{𝑖, 𝑖𝑘, 𝑖𝑘2, … , 𝑖𝑘𝑛−1} : 𝑖 ∈ ℤ𝑠

×} ≜ {[𝑖]: 𝑖 ∈ ℤ𝑠
×} , 

where 

⋃ {𝑖, 𝑖𝑘, 𝑖𝑘2, … , 𝑖𝑘𝑛−1}

[𝑖]∈ℤ𝑠
×/<𝑘>

= ℤ𝑠
×. 

(Here ∪ represents disjoint union, similarly hereinafter.) As a result, 

⋃ {𝑎𝑖, 𝑎𝑖𝑘, … , 𝑎𝑖𝑘𝑛−1
}

[𝑖]∈ℤ𝑠
×/<𝑘>

= {𝑎𝑖: 𝑖 ∈ ℤ𝑠
×}, 

(both sides should be interpreted as multisets,) which gives 

Theorem 1. Suppose gcd(𝑘, 𝑠) = 1 . Over 𝐹𝑘𝑛  , if 𝛷𝑠(𝑥)  factors as the form 

above, where 𝑎 is some element in 𝐹𝑘𝑛 , then over 𝐹𝑘, 𝛷𝑠(𝑥) factors as 

𝛷𝑠(𝑥) = ∏ 𝑃𝑎𝑖(𝑥)

[𝑖]∈ℤ𝑠
×/<𝑘>

. 

Moreover, 𝑃𝑎𝑖 is irreducible over 𝐹𝑘. 

This is quite natural because the set of the roots of ∏ 𝑃𝑎𝑖(𝑥)[𝑖]∈ℤ𝑠
×/<𝑘>   is 

⋃ {𝑎𝑖 , 𝑎𝑖𝑘, … , 𝑎𝑖𝑘𝑛−1
}[𝑖]∈ℤ𝑠

×/<𝑘> , and the set of the roots of 𝛷𝑠(𝑥) is {𝑎𝑖: 𝑖 ∈ ℤ𝑠
×}, so 

both sides are the same. 

By Lemma 1, 𝑃𝑎𝑖(𝑥) ∈ 𝐹𝑘[𝑥], so we have factored 𝛷𝑠(𝑥) over 𝐹𝑘. 

Now we show that 𝑃𝑎𝑖(𝑥) is irreducible over 𝐹𝑘. Let 𝑄(𝑥) be an irreducible 

factor of 𝑃𝑎𝑖(𝑥) such that deg 𝑄 = 𝑑′ > 0, then we have 𝐹𝑘𝑑′ ≅ 𝐹𝑘[𝑦]/𝑄[𝑦], that is 

to say, 

𝑄(𝑥)|𝑥𝑘𝑑′
−1 − 1. 

By definition, 

𝑄(𝑥)| gcd (𝛷𝑠(𝑥), 𝑥𝑘𝑑′
−1 − 1), 
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or equivalently, 

𝑄(𝑥)| gcd (𝛷𝑠(𝑥), ∏ 𝛷𝑞(𝑥)

𝑞|𝑘𝑑′
−1

). 

Note that if 𝑠 ≠ 𝑡, then gcd(𝛷𝑠(𝑥), 𝛷𝑡(𝑥)) = 1, otherwise 

gcd(𝛷𝑠(𝑥), 𝛷𝑡(𝑥))
2

|𝑥lcm(𝑠,𝑡) − 1, which is impossible because 𝑥lcm(𝑠,𝑡) − 1 should 

have no multiple factor. As deg 𝑄 > 0, we must have 𝑠|𝑘𝑑′
− 1, but 𝑑′ ≤ 𝑑, so 

𝑑′ = 𝑑. 

Example. Let 𝑠 = 11 and 𝑘 = 3, then 𝑛 = 5. ℤ11
× =

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, < 3 >= {1, 3, 4, 5, 9}, so 

ℤ11
× /< 3 >= {{1, 3, 4, 5, 9}, {2, 6, 7, 8, 10}} ≜ {[1], [2]}. 

Over 𝐹35, 𝛷11(𝑥) factors as 

(𝑥 − 𝑎)(𝑥 − 𝑎2)(𝑥 − 𝑎3)(𝑥 − 𝑎4)(𝑥 − 𝑎5)(𝑥 − 𝑎6)(𝑥 − 𝑎7)(𝑥 − 𝑎8)(𝑥 − 𝑎9)(𝑥 − 𝑎10), 

so over 𝐹3, the factorization of 𝛷11(𝑥) is 

𝛷11(𝑥) = 𝑃𝑎(𝑥)𝑃𝑎2(𝑥), 

where 

𝑃𝑎(𝑥) = (𝑥 − 𝑎)(𝑥 − 𝑎3)(𝑥 − 𝑎4)(𝑥 − 𝑎5)(𝑥 − 𝑎9), 

𝑃𝑎2(𝑥) = (𝑥 − 𝑎2)(𝑥 − 𝑎6)(𝑥 − 𝑎7)(𝑥 − 𝑎8)(𝑥 − 𝑎10). 

By Theorem 1, both 𝑃𝑎(𝑥) and 𝑃𝑎2(𝑥) are irreducible over 𝐹3. 

Corollary 1. Suppose gcd(𝑘, 𝑠) = 1. Over 𝐹𝑘, 𝛷𝑠(𝑥) is the product of 
𝜑(𝑠)

ord𝑠(𝑘)
 

irreducible polynomials of degree ord𝑠(𝑘), where 𝜑 is the Euler's totient function. 

 

Theorem 2. If 𝑒 > 0, then 

𝛷𝑟(𝑥) = (𝛷𝑠(𝑥))
(𝑝−1)𝑝𝑒−1

. 

Proof. By Moebius inversion formula, we have 

𝛷𝑠(𝑥) = ∏(𝑥𝑞 − 1)
𝜇(

𝑠
𝑞

)

𝑞|𝑠

. 

Since that 𝑟 = 𝑝𝑒𝑠, gcd(𝑘, 𝑠) = 1, we have 

𝛷𝑟(𝑥) = ∏ (𝑥𝑞 − 1)
𝜇(

𝑝𝑒𝑠
𝑞

)

𝑞|𝑝𝑒𝑠

= ∏ ∏ (𝑥𝑝𝑖𝑞 − 1)
𝜇(

𝑝𝑒𝑠

𝑝𝑖𝑞
)

𝑞|𝑠

𝑒

𝑖=0

 

= ∏ ∏ (𝑥𝑝𝑖𝑞 − 1)
𝜇(𝑝𝑒−𝑖 𝑠

𝑞
)

𝑒

𝑖=0𝑞|𝑠

= ∏ ∏(𝑥𝑞 − 1)
𝑝𝑖𝜇(𝑝𝑒−𝑖)𝜇(

𝑠
𝑞

)
𝑒

𝑖=0𝑞|𝑠
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= ∏(𝑥𝑞 − 1)
𝜇(

𝑠
𝑞

) ∑ 𝑝𝑖𝜇(𝑝𝑒−𝑖)𝑒
𝑖=0

𝑞|𝑠

= ∏(𝑥𝑞 − 1)
𝜇(

𝑠
𝑞

)(𝑝−1)𝑝𝑒−1

𝑞|𝑠

= (𝛷𝑠(𝑥))
(𝑝−1)𝑝𝑒−1

. 

Corollary 2. Let 𝑟 = 𝑝𝑒𝑠 , where 𝑝 = char(𝐹𝑘), 𝑝 ∤ 𝑠 . Over 𝐹𝑘 , 𝛷𝑟(𝑥)  is the 

product of 
𝜑(𝑟)

ord𝑠(𝑘)
 irreducible polynomials of degree ord𝑠(𝑘). 

Corollary 3. Over 𝐹𝑘, 𝛷𝑟(𝑥) is irreducible if and only if: 

(a) gcd(𝑘, 𝑟) = 1, and 𝑘 is a primitive root modulo 𝑟; 

(b) 𝑘 is a power of 2, 𝑟 ≡ 2 (mod 4), and 𝑘 is a primitive root modulo 
𝑟

2
. 

We can see from Corollary 3 that: 

(a) If there is no primitive root modulo 𝑟 (i.e., 𝑟 = 8,12,15,16, …), then 𝛷𝑟(𝑥) 

is reducible over every finite field, and specially, over every finite field of prime order. 

This is quite interesting because 𝛷𝑟(𝑥) is irreducible over ℚ; 

(b) If 𝑘 is a square number, then for every 𝑟 > 2, 𝛷𝑟(𝑥) is reducible over 𝐹𝑘. 

 

The following table gives the number of factors of 𝛷𝑟(𝑥) over 𝐹𝑘 for small 𝑘 

and 𝑟. 

𝑘/𝑟 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

2 1 1 1 2 1 1 2 4 1 1 1 2 1 2 2 8 

3 1 1 2 1 1 2 1 2 6 1 2 2 4 1 2 2 

4 1 1 2 2 2 2 2 4 2 2 2 4 2 2 4 8 

5 1 1 1 2 4 1 1 2 1 4 2 2 3 1 4 2 

7 1 1 2 1 1 2 6 2 2 1 1 2 1 6 2 4 

8 1 1 1 2 1 1 6 4 3 1 1 2 3 6 2 8 

9 1 1 2 2 2 2 2 4 6 2 2 4 4 2 4 4 

11 1 1 1 1 4 1 2 2 1 4 10 2 1 2 4 2 

13 1 1 2 2 1 2 3 2 2 1 1 4 12 3 2 2 

16 1 1 2 2 4 2 2 4 2 4 2 4 4 2 8 8 

17 1 1 1 2 1 1 1 4 3 1 1 2 2 1 2 8 

19 1 1 2 1 2 2 1 2 6 2 1 2 1 1 4 2 

23 1 1 1 1 1 1 2 2 1 1 10 2 2 2 2 4 

25 1 1 2 2 4 2 2 4 2 4 2 4 6 2 8 4 

27 1 1 2 1 1 2 3 2 6 1 2 2 12 3 2 2 

29 1 1 1 2 2 1 6 2 1 2 1 2 4 6 4 2 

 


