Given r and a finite field Fj,, we are interested in the question: how does @, (x)

factor over Fj, (@.(x) is the 7-th cyclotomic polynomial)? In the following
discussion, let v = p®s, where p = char(Fy),p t s.

Lemma 1. Va € Fyn, (x — a)(x — a*) ... (x — akn_l) € Fp[x].

This is obviously true if a = 0. Now suppose a # 0.
Note that the coefficient of x™™ of (x—a)(x—aX)..(x —a*""") is
(=1)™S,,, where
Sy = abn_lk”—1+bn_2k”—2+-~-+b1k+b0'
bp_1+bp_p+-+by+bo=m,b;€{0,1}

Lemma 1 is equivalent to the fact that S,,, € F;,, m = 0,1, ..., n, which is further
equivalent to S,’ﬁl =S, m=01,..,n
By the property of finite fields, we have

S#l — abn_lkn_1+bn_2kn_2+"'+b1k+b0

bp_1+bp_z+--+by+bg=mb;€{0,1}

_ (abn_lkn_l+bn_2kn_2+-~-+b1k+b0)k

bp_1+bp_z+-+by1+bg=m,b;€{0,1}

— ak(bn_lkn_l+bn_2kn_2+~-~+b1k+bo)

bp—1+bp_z+--+by+by=m,b;€{0,1}

— abn_lkn+bn_2kn_1+-~-+b1k2+b0k

bp_1+bp_s+-+by+bg=m,b;€{0,1}

— abn_1-1+bn_2kn_1+-~-+b1k2+b0k (By akn—l — 1) =S,
bp_1+bp_z+--+by+bg=m,b;€{0,1}
which is what we wanted.
k kn—l
By Lemma 1, we can see that for any a € Fyn, (x —a)(x —a®) ... (x —a )

is a polynomial acting as a bridge between Fpn and Fj. For convenience, we write

P(x) = (x—a)(x—aX)..(x - akn_l),‘v’a € Fjn.

Now we first consider the case e = 0. Write n = ordg(k), then k™ = 1 (mod s).
Since that the multiplicative group of Fyn is cyclic with k™ — 1 elements, x° — 1
factors completely into linear polynomials:



S
x5 —1= n(x —ab),
i=1

where a is some element in Fyn. By the definition of cyclotomic polynomials, over
Fin, @s(x) also factors completely into linear polynomials:

& (x) = 1—[ (x — ab).
1<iss
ged(i,s)=1
Actually, we would rather say "i € ZX" than say "gcd(i,s) = 1", where ZY is the
multiplicative group of integers modulo s. Note that

<k>={ekk, ..k }={Lki. . 1}

then,
X )<k >= {{z,m, W2, )T e z;} s ([[liezy),
where
U {1k, k2, ..., tk"=T} = 2.

[ilezy/<k>
(Here U represents disjoint union, similarly hereinafter.) As a result,

U {a azk ikn—l} — {ai:f € Z?},

[i]ezy/<k>

(both sides should be interpreted as multisets,) which gives
Theorem 1. Suppose gcd(k,s) = 1. Over Fyn, if &4(x) factors as the form
above, where a is some element in Fyn, then over F;, ®,(x) factors as

b, (x) = 1_[ P i(x).
[i]ezy /<k>

Moreover, P is irreducible over Fy.

This 1s quite natural because the set of the roots of H[E]ez;< /<k> P,i(x) is

U[;]EZ§/<;>{ai, ak, ..., aikn_l}, and the set of the roots of @(x) is {a":f S Z?}, SO

both sides are the same.

By Lemma 1, P,i(x) € Fi[x], so we have factored @;(x) over Fy.

Now we show that P_i(x) is irreducible over Fi. Let Q(x) be an irreducible
factor of Pi(x) suchthat degQ = d’ > 0, then we have F,a = Fi[y]/Q[y], thatis
to say,

QI 1 1.
By definition,

()| ged (@, -1 — 1),

2



or equivalently,

elged| 2,00, | | 200 )
qlkd -1

Note that if s # t, then gcd(@s(x),qbt(x)) = 1, otherwise
ged (@5 (x), <I>t(x))2 |xlem(:t) — 1 which is impossible because x'™® — 1 should

have no multiple factor. As deg Q > 0, we must have Slkd’ —1,but d' <d, so

d =d.
Example. Let s = 11 and k = 3,then n =5. Z| =

7}, /< 3 >= {{I 3,4,5,9},{2,6,7,8,10}} = {[1],[2]}
Over F3s, @11(x) factors as
(x—a)(x —a®)(x = a®)(x — a*)(x — a®)(x — a®) (x — a”)(x — a®)(x — a®) (x — a™),
so over Fj, the factorization of @;4(x) is
D11 (x) = Po(x)Pgz(x),
where
Po(x) = (x — &) (x — a®)(x — a*)(x — a®)(x — a?),
Ppe(x)=(x—-a?)(x—a®)(x—a”)(x—a®)(x — a?).
By Theorem 1, both P,(x) and P 2(x) are irreducible over Fj;.
P(s)
ordg(k)
irreducible polynomials of degree ordg(k), where ¢ is the Euler's totient function.

Corollary 1. Suppose gcd(k,s) = 1. Over Fj, ®s(x) is the product of

Theorem 2. If e > 0, then

&, (x) = (@,(0))

Proof. By Moebius inversion formula, we have

2.0 = [t - @

qls
Since that r = p¢s, gcd(k,s) = 1, we have

¢r(x)=l_[(xq—1) 1_[1_[ qu—l pq)

qlpés =0 qls

1_[1_[ xp iq _ 1 Hﬂ(xq 1)” tu(pe- l)u( )

qls i=0 qls i=0



n(xq o) Eop u(@e) _ n(xq S)e-1pet _ ((ps(x))(p—l)pe‘l.

qals qls
Corollary 2. Let r = p®s, where p = char(Fy),p ts. Over Fy, ®.(x) is the

£ )

ord. (09 irreducible polynomials of degree ord(k).

product o

Corollary 3. Over F,, @,.(x) isirreducible if and only if:
(a) gcd(k,r) =1, and k is a primitive root modulo r;

(b) k isapowerof2, r =2 (mod4), and k is a primitive root modulo g

We can see from Corollary 3 that:

(a) If there is no primitive root modulo r (i.e., r = 8,12,15,16, ...), then @,.(x)
is reducible over every finite field, and specially, over every finite field of prime order.
This is quite interesting because @,.(x) is irreducible over Q;

(b) If k is a square number, then for every r > 2, &,(x) is reducible over Fj.

The following table gives the number of factors of @,.(x) over F, for small k
and 1.
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