Given r and a finite field F_k , we are interested in the question: how does $\Phi_r(x)$ factor over F_k ($\Phi_r(x)$ is the r-th cyclotomic polynomial)? In the following discussion, let $r = p^e s$, where $p = \operatorname{char}(F_k), p \nmid s$.

Lemma 1.
$$\forall a \in F_{k^n}, (x-a)(x-a^k) \dots (x-a^{k^{n-1}}) \in F_k[x].$$

This is obviously true if a = 0. Now suppose $a \neq 0$.

Note that the coefficient of x^{n-m} of $(x-a)(x-a^k) \dots (x-a^{k^{n-1}})$ is $(-1)^m S_m$, where

$$S_m = \sum_{b_{n-1}+b_{n-2}+\dots+b_1+b_0=m, b_i \in \{0,1\}} a^{b_{n-1}k^{n-1}+b_{n-2}k^{n-2}+\dots+b_1k+b_0}.$$

Lemma 1 is equivalent to the fact that $S_m \in F_k$, m = 0, 1, ..., n, which is further equivalent to $S_m^k = S_m$, m = 0, 1, ..., n.

By the property of finite fields, we have

$$S_{m}^{k} = \left(\sum_{b_{n-1}+b_{n-2}+\dots+b_{1}+b_{0}=m,b_{i}\in\{0,1\}} a^{b_{n-1}k^{n-1}+b_{n-2}k^{n-2}+\dots+b_{1}k+b_{0}}\right)^{k}$$

$$= \sum_{b_{n-1}+b_{n-2}+\dots+b_{1}+b_{0}=m,b_{i}\in\{0,1\}} \left(a^{b_{n-1}k^{n-1}+b_{n-2}k^{n-2}+\dots+b_{1}k+b_{0}}\right)^{k}$$

$$= \sum_{b_{n-1}+b_{n-2}+\dots+b_{1}+b_{0}=m,b_{i}\in\{0,1\}} a^{k(b_{n-1}k^{n-1}+b_{n-2}k^{n-2}+\dots+b_{1}k+b_{0})}$$

$$= \sum_{b_{n-1}+b_{n-2}+\dots+b_{1}+b_{0}=m,b_{i}\in\{0,1\}} a^{b_{n-1}k^{n}+b_{n-2}k^{n-1}+\dots+b_{1}k^{2}+b_{0}k}$$

$$= \sum_{b_{n-1}+b_{n-2}+\dots+b_{1}+b_{0}=m,b_{i}\in\{0,1\}} a^{b_{n-1}\cdot1+b_{n-2}k^{n-1}+\dots+b_{1}k^{2}+b_{0}k} (\text{By } a^{k^{n}-1} = 1) = S_{m},$$

which is what we wanted.

=

By Lemma 1, we can see that for any $a \in F_{k^n}$, $(x - a)(x - a^k) \dots (x - a^{k^{n-1}})$ is a polynomial acting as a bridge between F_{k^n} and F_k . For convenience, we write

$$P_a(x) \coloneqq (x-a)(x-a^k) \dots (x-a^{k^{n-1}}), \forall a \in F_{k^n}.$$

Now we first consider the case e = 0. Write $n = \text{ord}_s(k)$, then $k^n \equiv 1 \pmod{s}$. Since that the multiplicative group of F_{k^n} is cyclic with $k^n - 1$ elements, $x^s - 1$ factors completely into linear polynomials:

$$x^s - 1 = \prod_{i=1}^s (x - a^i),$$

where a is some element in F_{k^n} . By the definition of cyclotomic polynomials, over F_{k^n} , $\Phi_s(x)$ also factors completely into linear polynomials:

$$\Phi_{s}(x) = \prod_{\substack{1 \le i \le s \\ \gcd(i,s)=1}} (x - a^{i}).$$

Actually, we would rather say " $\overline{i} \in \mathbb{Z}_{s}^{\times}$ " than say "gcd(i, s) = 1", where \mathbb{Z}_{s}^{\times} is the multiplicative group of integers modulo s. Note that

$$<\overline{k}>=\left\{e,\overline{k},\overline{k}^2,\ldots,\overline{k}^{n-1}\right\}=\left\{\overline{1},\overline{k},\overline{k^2},\ldots,\overline{k^{n-1}}\right\},$$

then,

$$\mathbb{Z}_{s}^{\times}/\langle \overline{k} \rangle = \left\{ \left\{ \overline{i}, \overline{ik}, \overline{ik^{2}}, \dots, \overline{ik^{n-1}} \right\} : \overline{i} \in \mathbb{Z}_{s}^{\times} \right\} \triangleq \left\{ \left[\overline{i} \right] : \overline{i} \in \mathbb{Z}_{s}^{\times} \right\},\$$

where

$$\bigcup_{[\overline{i}]\in\mathbb{Z}_{s}^{\times}/<\overline{k}>}\left\{\overline{i},\overline{ik},\overline{ik^{2}},\ldots,\overline{ik^{n-1}}\right\}=\mathbb{Z}_{s}^{\times}.$$

(Here U represents disjoint union, similarly hereinafter.) As a result,

$$\bigcup_{[\overline{i}]\in\mathbb{Z}_{s}^{\times}/<\overline{k}>}\left\{a^{i},a^{ik},\ldots,a^{ik^{n-1}}\right\}=\left\{a^{i}:\overline{i}\in\mathbb{Z}_{s}^{\times}\right\},$$

(both sides should be interpreted as multisets,) which gives

Theorem 1. Suppose gcd(k, s) = 1. Over F_{k^n} , if $\Phi_s(x)$ factors as the form above, where a is some element in F_{k^n} , then over F_k , $\Phi_s(x)$ factors as

$$\Phi_{s}(x) = \prod_{[\overline{i}] \in \mathbb{Z}_{s}^{\times} / < \overline{k} >} P_{a^{i}}(x).$$

Moreover, P_{a^i} is irreducible over F_k .

This is quite natural because the set of the roots of $\prod_{i \in \mathbb{Z}_{s}^{\times}/\langle \overline{k} \rangle} P_{a^{i}}(x)$ is

 $\bigcup_{[\overline{i}]\in\mathbb{Z}_{s}^{\times}/\langle \overline{k}\rangle}\{a^{i},a^{ik},\ldots,a^{ik^{n-1}}\},\text{ and the set of the roots of } \Phi_{s}(x) \text{ is } \{a^{i}:\overline{i}\in\mathbb{Z}_{s}^{\times}\},\text{ so}$

both sides are the same.

By Lemma 1, $P_{a^i}(x) \in F_k[x]$, so we have factored $\Phi_s(x)$ over F_k .

Now we show that $P_{a^i}(x)$ is irreducible over F_k . Let Q(x) be an irreducible factor of $P_{a^i}(x)$ such that $\operatorname{deg} Q = d' > 0$, then we have $F_{k^{d'}} \cong F_k[y]/Q[y]$, that is to say,

$$Q(x)|x^{k^{d'-1}}-1$$

By definition,

$$Q(x)|\gcd\left(\Phi_{s}(x),x^{k^{d'}-1}-1\right),$$

or equivalently,

$$Q(x)| \operatorname{gcd}\left(\Phi_{s}(x), \prod_{q|k^{d'}-1} \Phi_{q}(x)\right).$$

Note that if $s \neq t$, then $gcd(\Phi_s(x), \Phi_t(x)) = 1$, otherwise

 $gcd(\Phi_s(x), \Phi_t(x))^2 |x^{lcm(s,t)} - 1$, which is impossible because $x^{lcm(s,t)} - 1$ should have no multiple factor. As $\deg Q > 0$, we must have $s|k^{d'} - 1$, but $d' \le d$, so d' = d.

Example. Let s = 11 and k = 3, then n = 5. $\mathbb{Z}_{11}^{\times} = \{\overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}, \overline{8}, \overline{9}, \overline{10}\}, <\overline{3} >= \{\overline{1}, \overline{3}, \overline{4}, \overline{5}, \overline{9}\}$, so

$$\mathbb{Z}_{11}^{\times}/\langle \overline{3} \rangle = \left\{ \{\overline{1}, \overline{3}, \overline{4}, \overline{5}, \overline{9}\}, \{\overline{2}, \overline{6}, \overline{7}, \overline{8}, \overline{10}\} \right\} \triangleq \{[\overline{1}], [\overline{2}]\}.$$

Over F_{3^5} , $\Phi_{11}(x)$ factors as

 $(x-a)(x-a^2)(x-a^3)(x-a^4)(x-a^5)(x-a^6)(x-a^7)(x-a^8)(x-a^9)(x-a^{10}),$ so over F_3 , the factorization of $\Phi_{11}(x)$ is

$$\Phi_{11}(x) = P_a(x)P_{a^2}(x),$$

where

$$P_a(x) = (x - a)(x - a^3)(x - a^4)(x - a^5)(x - a^9),$$

$$P_{a^2}(x) = (x - a^2)(x - a^6)(x - a^7)(x - a^8)(x - a^{10}).$$

By Theorem 1, both $P_a(x)$ and $P_{a^2}(x)$ are irreducible over F_3 .

Corollary 1. Suppose gcd(k,s) = 1. Over F_k , $\Phi_s(x)$ is the product of $\frac{\varphi(s)}{\operatorname{ord}_s(k)}$

irreducible polynomials of degree $\operatorname{ord}_{s}(k)$, where φ is the Euler's totient function.

Theorem 2. If e > 0, then

$$\Phi_r(x) = \left(\Phi_s(x)\right)^{(p-1)p^{e-1}}$$

Proof. By Moebius inversion formula, we have

$$\Phi_s(x) = \prod_{q|s} (x^q - 1)^{\mu\left(\frac{s}{q}\right)}.$$

10

Since that $r = p^e s$, gcd(k, s) = 1, we have

$$\Phi_{r}(x) = \prod_{q|p^{e_{s}}} (x^{q} - 1)^{\mu\left(\frac{p^{e_{s}}}{q}\right)} = \prod_{i=0}^{e} \prod_{q|s} \left(x^{p^{i_{q}}} - 1\right)^{\mu\left(\frac{p^{e_{s}}}{p^{i_{q}}}\right)}$$
$$= \prod_{q|s} \prod_{i=0}^{e} \left(x^{p^{i_{q}}} - 1\right)^{\mu\left(p^{e-i_{s}}\frac{s}{q}\right)} = \prod_{q|s} \prod_{i=0}^{e} \left(x^{q} - 1\right)^{p^{i_{\mu}}\left(p^{e-i_{s}}\right)} \left(x^{q} - 1\right)^{p^{i_{\mu}}\left(p^{e-i_{s}}\right)}$$

$$=\prod_{q|s}(x^{q}-1)^{\mu\left(\frac{s}{q}\right)\sum_{i=0}^{e}p^{i}\mu\left(p^{e-i}\right)}=\prod_{q|s}(x^{q}-1)^{\mu\left(\frac{s}{q}\right)(p-1)p^{e-1}}=\left(\Phi_{s}(x)\right)^{(p-1)p^{e-1}}.$$

Corollary 2. Let $r = p^e s$, where $p = char(F_k), p \nmid s$. Over $F_k, \Phi_r(x)$ is the product of $\frac{\varphi(r)}{\operatorname{ord}_s(k)}$ irreducible polynomials of degree $\operatorname{ord}_s(k)$.

Corollary 3. Over F_k , $\Phi_r(x)$ is irreducible if and only if:

(a) gcd(k,r) = 1, and k is a primitive root modulo r;

(b) k is a power of 2, $r \equiv 2 \pmod{4}$, and k is a primitive root modulo $\frac{r}{2}$.

We can see from Corollary 3 that:

(a) If there is no primitive root modulo r (i.e., r = 8,12,15,16,...), then $\Phi_r(x)$ is reducible over every finite field, and specially, over every finite field of prime order. This is quite interesting because $\Phi_r(x)$ is irreducible over \mathbb{Q} ;

(b) If k is a square number, then for every r > 2, $\Phi_r(x)$ is reducible over F_k .

The following table gives the number of factors of $\Phi_r(x)$ over F_k for small k and r.

k/r	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
2	1	1	1	2	1	1	2	4	1	1	1	2	1	2	2	8
3	1	1	2	1	1	2	1	2	6	1	2	2	4	1	2	2
4	1	1	2	2	2	2	2	4	2	2	2	4	2	2	4	8
5	1	1	1	2	4	1	1	2	1	4	2	2	3	1	4	2
7	1	1	2	1	1	2	6	2	2	1	1	2	1	6	2	4
8	1	1	1	2	1	1	6	4	3	1	1	2	3	6	2	8
9	1	1	2	2	2	2	2	4	6	2	2	4	4	2	4	4
11	1	1	1	1	4	1	2	2	1	4	10	2	1	2	4	2
13	1	1	2	2	1	2	3	2	2	1	1	4	12	3	2	2
16	1	1	2	2	4	2	2	4	2	4	2	4	4	2	8	8
17	1	1	1	2	1	1	1	4	3	1	1	2	2	1	2	8
19	1	1	2	1	2	2	1	2	6	2	1	2	1	1	4	2
23	1	1	1	1	1	1	2	2	1	1	10	2	2	2	2	4
25	1	1	2	2	4	2	2	4	2	4	2	4	6	2	8	4
27	1	1	2	1	1	2	3	2	6	1	2	2	12	3	2	2
29	1	1	1	2	2	1	6	2	1	2	1	2	4	6	4	2