OFFSET
0,3
COMMENTS
Invert transform of A046951.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
FORMULA
G.f.: 1 / (1 - Sum_{k>=1} x^(k^2) / (1 - x^(k^2))).
G.f.: 1 / (1 - Sum_{k>=1} (theta_3(x^k) - 1) / 2), where theta_() is the Jacobi theta function.
a(0) = 1; a(n) = Sum_{k=1..n} A046951(k) * a(n-k).
MAPLE
a:= proc(n) option remember; `if`(n<1, 1, add(a(n-i)*
nops(select(issqr, numtheory[divisors](i))), i=1..n))
end:
seq(a(n), n=0..35); # Alois P. Heinz, Sep 23 2019
MATHEMATICA
nmax = 33; CoefficientList[Series[1/(1 - Sum[x^(k^2)/(1 - x^(k^2)), {k, 1, Floor[Sqrt[nmax]] + 1}]), {x, 0, nmax}], x]
a[0] = 1; a[n_] := a[n] = Sum[Length[Select[Divisors[k], IntegerQ[Sqrt[#]] &]] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 33}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Sep 23 2019
STATUS
approved